Advertisement

Annals of Global Analysis and Geometry

, Volume 46, Issue 3, pp 259–279 | Cite as

Omori–Yau maximum principles, \(V\)-harmonic maps and their geometric applications

  • Qun Chen
  • Jürgen JostEmail author
  • Hongbing Qiu
Article

Abstract

We establish a V-Laplacian comparison theorem under the Bakry–Emery Ricci condition and then give various Omori–Yau type maximum principles on complete noncompact manifolds. We also obtain Liouville theorems for V-harmonic maps. We apply these findings to Ricci solitons and self-shrinkers.

Keywords

Omori–Yau maximum principle V-Laplacian V-harmonic map Ricci soliton Self-shrinker 

Mathematics Subject Classification (2000)

58E20 53C27 

References

  1. 1.
    Alias, L.J., Bessa, G.P., Montenegro, J.F.: An estimate for the sectional curvature of cylindrically bounded submanifolds. Trans. Am. Math. Soc. 364(7), 3513–3528 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Alias, L.J., Dajczer, M.: Constant mean curvature hypersurfaces in warped product spaces. Proc. Edinb. Math. Soc. (2) 50(3), 511–526 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bejan, C.L., Binh, T.Q., Tamassy, L.: Isometric or harmonic mappings of complete Riemannian manifolds. Publ. Math. Debrecen 60(3–4), 455–461 (2002)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Ballmann, W., Gromov, M., Schroeder, V.: Manifolds of nonpositive curvature. Progress in Mathematics. Birkhauser, Basel (1985)CrossRefGoogle Scholar
  5. 5.
    Cao, H.-D.: Geometry of complete gradient shrinking Ricci solitons. Advanced lectures in mathematics, pp. 227–246. International Press, Somerville (2011)Google Scholar
  6. 6.
    Cao, H.-D., Li, H.: A gap theorem for self-shrinkers of the mean curvature flow in arbitrary codimension. Cal. Var. (February 2012) (2011). doi: 10.1007/s00526-012-0508-1, arXiv:1101.0516v1
  7. 7.
    Cao, H.-D., Zhou, D.: On complete gradient shrinking Ricci solitons. J. Differ. Geom. 85, 175–186 (2010)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Chen, B.-L.: Strong uniqueness of the Ricci flow. J. Differ. Geom. 82, 363–382 (2009)zbMATHGoogle Scholar
  9. 9.
    Chen, Q., Jost, J., Qiu, H.B.: Existence and Liouville theorems for \(V\)-harmonic maps from complete manifolds. Ann. Glob. Anal. Geom. 42(4), 565–584 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Chen, Q., Jost, J., Wang, G.F.: A maximum principle for generalizations of harmonic maps in Hermitian, affine, Weyl and Finsler geometry, Preprint (2011)Google Scholar
  11. 11.
    Chen, Q., Zhou, W.B.: Bochner-type formulas for transversally harmonic maps. Inter. J. Math. 23(3), p 25, Article ID 1250003 (2012)Google Scholar
  12. 12.
    Cheng, Q.-M., Peng, Y.: Complete self-shrinkers of the mean curvature flow (2012). arXiv:1202.1053v1
  13. 13.
    Chen, Q., Xin, Y.L.: A generalized maximum principle and its applications in geometry. Am. J. Math. 114, 355–366 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Cheng, S.Y., Yau, S.T.: Differential equations on Riemannian manifolds and their geometric applications. Commun. Pure Appl. Math. 28, 333–354 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Cheng, X., Zhou, D.: Volume estimate about shrinkers. Proc. Am. Math. Soc. 142(2), 687–696 (2013)Google Scholar
  16. 16.
    Colding, T., Minicozzi II, W.: Generic mean curvature flow I; generic singularities. Ann. Math. (2) 175(2), 755–833 (2012)Google Scholar
  17. 17.
    Ding, Q., Wang, Z.: On the self-shrinking systems in arbitrary codimensional spaces (2011). arXiv:1012.0429v2
  18. 18.
    Ding, Q., Xin, Y.L., Yang, L.: The rigidity theorems of self-shrinkers via Gauss maps, arXiv:1203.1096 (2012)
  19. 19.
    Fernández-López, M., García Río, E.: A remark on compact Ricci solitons. Math. Ann. 340, 893–896 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Fernández-López, M., García Río, E.: Maximum principles and gradient Ricci solitons. J. Differ. Equ. 251, 73–81 (2011)CrossRefzbMATHGoogle Scholar
  21. 21.
    Grigor’yan, A.: Alexander Analytic and geometric background of recurrence and non-explosion of the Brownian motion on Riemannian manifolds. Bull. Am. Math. Soc. 36, 135–249 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Hamilton, R. S.: The formation of singularities in the Ricci flow. In: Surveys in differential geometry, vol. 2 (Cambridge, MA, 1993), pp. 7–136. International Press, Cambridge, MA (1995)Google Scholar
  23. 23.
    Huang, X.G.: The maximum principle on complete Riemannian manifolds (in Chinese). Chin. Ann. Math. 14A(2), 175–185 (1993)Google Scholar
  24. 24.
    Jost, J., Xin, Y.L.: Some aspects of the global geometry of entire space-like submanifolds. Result Math. 40, 233–245 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Jost, J., Xin, Y.L.: Bernstein type theorems for higher codimension. Calc. Var. Partial Differ. Equ. 9, 277–296 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Li, X.D.: Liouville theorems for symmetric diffusion operators on complete Riemannian manifolds. J. Math. Pures Appl. 84(10), 1295–1361 (2005)Google Scholar
  27. 27.
    Lima, B.P., Pessoa, L.F.: On the Omori–Yau maximum principle and geometric applications (2012). arXiv:1201.1675v1
  28. 28.
    Liu, H.Q., Xin, Y.L.: Some results on space-like self-shrinkers, arXiv:1211.2876 (2012)
  29. 29.
    Lott, J.: Some geometric properties of the Bakry–Emery–Ricci tensor. Comment. Math. Helv. 78(4), 865–883 (2003)Google Scholar
  30. 30.
    Munteanu, O., Wang, J.: Smooth metric measure spaces with non-negative curvature. Commun. Anal. Geom. 19(3), 451–486 (2011)Google Scholar
  31. 31.
    Omori, H.: Isometric immersion of Riemannian manifolds. J. Math. Soc. Jpn. 19, 205–214 (1967)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Pacelli Bessa, G., Silvana Costa, M.: On cylindrically bounded H-hypersurfaces of \(H^n\times R \). Differ. Geom. Appl. 26(3), 323–326 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Pigola, S., Rigoli, M., Setti, A.: Maximum principle on Riemannian manifolds and applications. Mem. Am. Math. Soc. 174(822) (2005)Google Scholar
  34. 34.
    Pigola, S., Rimoldi, M., Setti, A.: Remarks on non-compact gradient Ricci solitons. Math. Z. 268, 777–790 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Qiu, H.B., Xin, Y.L.: Proper manifolds in product manifolds. Chin. Ann. Math. 33B(1), 1–16 (2012)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Ratto, A., Rigoli, M., Setti, A.: On the Omori–Yau maximum principle and its applications to differential equations and geometry. J. Funct. Anal. 134, 486–510 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Rimoldi, M., Veronelli, G.: f-Harmonic maps and applications to gradient Ricci solitons. (2011) arXiv:1112.3637v1
  38. 38.
    Shen, Y.: A Liouville theorem for harmonic maps. Am. J. Math. 117(3), 773–785 (1995)CrossRefzbMATHGoogle Scholar
  39. 39.
    Takegoshi, K.: A priori upper bounds of solutions satisfying a certain differential inequality on complete manifolds. Osaka J. Math. 43(4), 791–806 (2006)MathSciNetzbMATHGoogle Scholar
  40. 40.
    Wang, G.F., Xu, D.L.: Harmonic maps from smooth measure spaces. Int. J. Math. 23, 1250095 (2012). doi: 10.1142/S0129167X12500954 CrossRefGoogle Scholar
  41. 41.
    Wei, G.F., Wylie, W.: Comparison goemetry for the Bakry–Emery Ricci tensor. J. Differ. Geom. 83, 377–405 (2009)MathSciNetzbMATHGoogle Scholar
  42. 42.
    Xin, Y.L.: Mean curvature flow with bounded Gauss image. Results Math. 59, 415–436 (2011)Google Scholar
  43. 43.
    Xin, Y.L.: Minimal submanifolds and related topics. World Scientific Publication, Singapore (2003)zbMATHGoogle Scholar
  44. 44.
    Yau, S.T.: Harmonic function on complete Riemannian manifolds. Commun. Pure. Appl. Math. 28, 201–228 (1975)CrossRefzbMATHGoogle Scholar
  45. 45.
    Zhao, Z.C.: Spacelike graphs with parallel mean curvature in pseudo-Riemannian product manifolds. Chin. Ann. Math. 33B(1), 17–32 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.School of Mathematics and StatisticsWuhan UniversityWuhanChina
  2. 2.Max Planck Institute for Mathematics in the Sciences LeipzigGermany
  3. 3.Department of MathematicsLeipzig UniversityLeipzigGermany

Personalised recommendations