Annals of Global Analysis and Geometry

, Volume 45, Issue 1, pp 11–24 | Cite as

Conical Ricci-flat nearly para-Kähler manifolds

  • Lars SchäferEmail author


In this paper, we classify conical Ricci-flat nearly para-Kähler manifolds having isotropic Nijenhuis tensor. More precisely, we give a bijective correspondence between this class of nearly para-Kähler manifolds and local cones \(M_1 \times (a,b)\) over para-Sasaki-Einstein manifolds \((M_1,g_1,T)\) carrying a parallel 3-form with isotropic support. Moreover, we show that the cone over a para-Sasaki-Einstein five-manifold \((M_1,g_1,T)\) admits a family of parallel 3-forms with isotropic support. As an application our result yields first examples of Ricci-flat (non-flat) nearly para-Kähler structures.


Nearly para-Kähler manifold Ricci-flat Semi-Riemannian metrics 

Mathematics Subject Classification (2000)

53C15 53C28 53C29 53C25 53C26 



The author thanks Lutz Habermann and the unkown referee for valuable comments on earlier versions of the manuscript and Florin Belgun and Vicente Cortés for interest and remarks during a research stay at Hamburg.


  1. 1.
    Agricola, I., Höll, J.: Cones of G manifolds and killing spinors with skew torsion. arXiv:1303.3601 (2013)Google Scholar
  2. 2.
    Alekseevsky, D.V., Medori, K., Tomassini, A.: Homogeneous para-Kählerian Einstein manifolds. Uspekhi Mat. Nauk 64(1(385)), 3–50 (2009) (Russian, with Russian summary); English transl., Russ. Math. Surv. 64(1), 1–43 (2009)Google Scholar
  3. 3.
    Alekseevsky, D.V., Cortés, V., Galaev, A.S., Leistner, Th: Cones over pseudo-Riemannian manifolds and their holonomy. J. Reine Angew. Math. 635, 23–69 (2009)zbMATHMathSciNetGoogle Scholar
  4. 4.
    Bär, Ch.: Real killing spinors and holonomy. Commun. Math. Phys. 154(3), 509–521 (1993)CrossRefzbMATHGoogle Scholar
  5. 5.
    Bérard Bergery, L., Ikemakhen, A.: Sur l’holonomie des variétés pseudo-riemanniennes de signature \((n, n)\). Bull. Soc. Math. France 125(1), 93–114 (1997) (French, with English and French summaries)Google Scholar
  6. 6.
    Belgun, F., Moroianu, A.: Nearly Kähler 6-manifolds with reduced holonomy. Ann. Global Anal. Geom. 19(4), 307–319 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Boyer, C., Galicki, K.: Sasakian Geometry. Oxford Mathematical Monographs. Oxford University Press, Oxford (2008)Google Scholar
  8. 8.
    Butruille, J.-B.: Classification des variétés approximativement kähleriennes homogènes. Ann. Global Anal. Geom. 27(3), 201–225 (2005). doi: 10.1007/s10455-005-1581-x (French, with English summary)
  9. 9.
    Cappelletti Montano, B., Carriazo, A., Martin-Molina, V.: Sasaki-Einstein and paraSasaki-Einstein metrics from \((k,\mu )\)-structures. arXiv:1109.6248Google Scholar
  10. 10.
    Conti, D., Bruun Madsen, Th.: The odd side of torsion geometry. arXiv:1207.3072 (2012)Google Scholar
  11. 11.
    Cortés, V., Lawn, M.-A., Schäfer, L.: Affine hyperspheres associated to special para-Kähler manifolds. Int. J. Geom. Methods Mod. Phys. 3(5–6), 995–1009 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Cortés, V., Leistner, Th, Schäfer, L., Schulte-Hengesbach, F.: Half-flat structures and special holonomy. Proc. Lond. Math. Soc. 102(3), 113–158 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Cortés, V., Schäfer, L.: Flat nearly Kähler manifolds. Ann. Global Anal. Geom. 32(4), 379–389 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Cortés, V., Schäfer, L.: Geometric structures on Lie groups with flat bi-invariant metric. J. Lie Theory 19(1), 423–437 (2009)zbMATHMathSciNetGoogle Scholar
  15. 15.
    Cruceanu, V., Fortuny, P., Gadea, P.M.: A survey on paracomplex geometry. Rocky Mt. J. Math. 26(1), 83–115 (1996)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Cecotti, S., Vafa, C.: Topological-anti-topological fusion. Nuclear Phys. B 367(2), 359–461 (1991). doi: 10.1016/0550-3213(91)90021-O CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Cecotti, S., Vafa, C.: On classification of \(N=2\) supersymmetric theories. Commun. Math. Phys. 158(3), 569–644 (1993)CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Duff, M.J., Nilsson, B.E.W., Pope, C.N.: Kaluza–Klein supergravity. Phys. Rep. 130(1–2), 1–142 (1986). doi: 10.1016/0370-1573(86)90163-8 CrossRefMathSciNetGoogle Scholar
  19. 19.
    Friedrich, Th.: Der erste Eigenwert des Dirac-Operators einer kompakten, Riemannschen Mannigfaltigkeit nichtnegativer Skalarkrümmung. Math. Nachr. 97, 117–146 (1980) (German)Google Scholar
  20. 20.
    Friedrich, Th, Ivanov, Stefan: Parallel spinors and connections with skew-symmetric torsion in string theory. Asian J. Math. 6(2), 303–335 (2002)zbMATHMathSciNetGoogle Scholar
  21. 21.
    Friedrich, Th.: On types of non-integrable geometries. In: Proceedings of the 22nd Winter School “Geometry and Physics” (Srní, 2002), pp. 99–113 (2003)Google Scholar
  22. 22.
    Gallot, S.: Équations différentielles caractéristiques de la sphère. Ann. Sci. École Norm. Sup. (4) 12(2), 235–267 (1979) (French)Google Scholar
  23. 23.
    Gadea, P.M., Masque, J.M.: Classification of almost para-Hermitian manifolds. Rend. Math. Appl. (7) 11(2), 377–396 (1991) (English, with Italian summary)Google Scholar
  24. 24.
    Gray, A.: Minimal varieties and almost Hermitian submanifolds. Mich. Math. J. 12, 273–287 (1965)CrossRefzbMATHGoogle Scholar
  25. 25.
    Gray, A.: Almost complex submanifolds of the six sphere. Proc. Am. Math. Soc. 20, 277–279 (1969)CrossRefzbMATHGoogle Scholar
  26. 26.
    Gray, A.: Nearly Kähler manifolds. J. Differ. Geom. 4, 283–309 (1970)zbMATHGoogle Scholar
  27. 27.
    Gray, A.: Riemannian manifolds with geodesic symmetries of order \(3\). J. Differ. Geom. 7, 343–369 (1972)zbMATHGoogle Scholar
  28. 28.
    Gray, A.: The structure of nearly Kähler manifolds. Math. Ann. 223(3), 233–248 (1976)CrossRefzbMATHMathSciNetGoogle Scholar
  29. 29.
    Gray, A., Hervella, L.M.: The sixteen classes of almost Hermitian manifolds and their linear invariants. Ann. Mat. Pura Appl. (4) 123, 35–58 (1980). doi: 10.1007/BF01796539 CrossRefzbMATHMathSciNetGoogle Scholar
  30. 30.
    Grunewald, R.: Six-dimensional Riemannian manifolds with a real Killing spinor. Ann. Global Anal. Geom. 8(1), 43–59 (1990). doi: 10.1007/BF00055017 CrossRefzbMATHMathSciNetGoogle Scholar
  31. 31.
    Harvey, F.R., Lawson Jr., H.B.: Split special Lagrangian geometry. arXiv:1007.0450 (2010)Google Scholar
  32. 32.
    Hitchin, N.: Stable forms and special metrics. (Bilbao, 2000). Contemporary Mathematics, vol. 288, pp. 70–89. American Mathematical Society, Providence (2001)Google Scholar
  33. 33.
    Hitchin, N.: The geometry of three-forms in six dimensions. J. Differ. Geom. 55(3), 547–576 (2000)zbMATHMathSciNetGoogle Scholar
  34. 34.
    Ivanov, S., Zamkovoy, S.: Parahermitian and paraquaternionic manifolds. Differ. Geom. Appl. 23(2), 205–234 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  35. 35.
    Jensen, G.R.: Imbeddings of Stiefel manifolds into Grassmannians. Duke Math. J. 42(3), 397–407 (1975)CrossRefzbMATHMathSciNetGoogle Scholar
  36. 36.
    Kath, I.: Killing Spinors on Pseudo-Riemannian Manifolds. Habilitationsschrift an der Humboldt-Universität zu Berlin (1999)Google Scholar
  37. 37.
    Kath, I.: Pseudo-Riemannian \(T\)-duals of compact Riemannian homogeneous spaces. Transform. Groups 5(2), 157–179 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  38. 38.
    Kirichenko, V.F.: Generalized Gray–Hervella classes and holomorphically projective transformations of generalized almost Hermitian structures. Izv. Math. 69(5), 963–987 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  39. 39.
    O’Neill, B.: Semi-Riemannian geometry. Pure and Applied Mathematics, vol. 103. Academic Press Inc. [Harcourt Brace Jovanovich Publishers], New York (1983). With applications to relativityGoogle Scholar
  40. 40.
    Nagy, P.-A.: On nearly-Kähler geometry. Ann. Global Anal. Geom. 22(2), 167–178 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  41. 41.
    Nagy, P.-A.: Nearly Kähler geometry and Riemannian foliations. Asian J. Math. 6(3), 481–504 (2002)zbMATHMathSciNetGoogle Scholar
  42. 42.
    Schäfer, L., Schulte-Hengesbach, F.: Nearly pseudo-Kähler and nearly para-Kähler six-manifolds. In: Handbook of pseudo-Riemannian geometry and supersymmetry, chap. 12. IRMA Lectures in Mathematics and Theoretical Physics, vol. 16. EMS Publishing House, Zürich (2010). arXiv:0907.1222Google Scholar
  43. 43.
    Schäfer, L.: Para-\(tt^{\ast }\)-bundles on the tangent bundle of an almost para-complex manifold. Ann. Global Anal. Geom. 32(2), 125–145 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  44. 44.
    Schäfer, L.: \(tt^{*}\)-geometry on the tangent bundle of an almost complex manifold. J. Geom. Phys. 57(3), 999–1014 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  45. 45.
    Schäfer, L.: On the structure of nearly pseudo-Kähler manifolds. Monatsh. Math. 163(3), 339–371 (2011). doi: 10.1007/s00605-009-0184-1 CrossRefzbMATHMathSciNetGoogle Scholar
  46. 46.
    Strominger, A.: Superstrings with torsion. Nuclear Phys. B 274(2), 253–284 (1986). doi: 10.1016/0550-3213(86)90286-5 CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Institut für DifferentialgeometrieLeibniz Universität HannoverHannoverGermany

Personalised recommendations