Annals of Global Analysis and Geometry

, Volume 43, Issue 1, pp 19–29 | Cite as

Compact conformally Kähler Einstein-Weyl manifolds

Open Access
Article

Abstract

We give a description of compact conformally Kähler Einstein-Weyl manifolds whose Ricci tensor is Hermitian.

Notes

Acknowledgments

The author thanks the referee for his valuable remarks, which improved the paper. The paper was supported by Narodowe Centrum Nauki grant no. DEC-2011/01/B/ST1/02643.

Open Access

This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

References

  1. 1.
    Bérard Bergery L.: Sur de nouvelles variétés riemanniennes d’Einstein. Publ. de l’Inst. E. Cartan (Nancy) 4, 1–60 (1982)Google Scholar
  2. 2.
    Besse A.: Einstein manifolds. Springer, Berlin, HD (1987)MATHGoogle Scholar
  3. 3.
    Derdziński A., Maschler G.: Local classification of conformally-Einstein Kähler metrics in higher dimension. Proc. London Math. Soc. (3) 87(3), 779–819 (2003)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Derdziński A., Maschler G.: A moduli curve for compact conformally-Einstein Kähler manifolds. Compos. Math. 141(4), 1029–1080 (2005)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Derdziński A., Maschler G.: Special Kähler-Ricci potentials on compact Kähler manifolds. J. Reine Angew. Math. 593, 73–116 (2006)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Dunajski, M., Tod, K.P.: Four dimensional metrics conformal to Kähler. In: Mathematical Proceedings of the Cambridge Philosophical Society, Cambridge (2010)Google Scholar
  7. 7.
    Gauduchon P.: La 1-forme de torsion d’une variete hermitienne compacte. Math. Ann. 267, 495–518 (1984)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Gray A.: Einstein-like manifolds which are not Einstein. Geom. Dedicata 7, 259–280 (1978)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Jelonek W.: Killing tensors and Einstein-Weyl geometry. Colloq. Math. 81(1), 5–19 (1999)MathSciNetMATHGoogle Scholar
  10. 10.
    Jelonek W.: Higher dimensional Gray Hermitian manifolds. J. London Math. Soc. (2) 80(3), 729–749 (2009)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Kobayashi S.: Transformation groups in differential geometry. Springer, Berlin (1972)MATHCrossRefGoogle Scholar
  12. 12.
    Lichnerowicz A.: Geometrie des groupes de transformations. Dunod, Paris (1958)MATHGoogle Scholar
  13. 13.
    Madsen, B., Pedersen, H., Poon, Y., Swann, A.: Compact Einstein-Weyl manifolds with large symmetry group. Duke Math. J. 88 (1997), 407–434 (Corrigendum: Duke Math. J. 100 167–167 (1999))Google Scholar
  14. 14.
    Moroianu, A.: Lectures on Kähler Geometry. LMSST 69. Cambrige University Press, Cambrige (2007)Google Scholar
  15. 15.
    Pedersen H., Swann A.: Riemannian submersions, four-manifolds and Einstein-Weyl geometry. Proc. London Math. Soc 66(3), 381–399 (1993)MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Pedersen H., Swann A.: Einstein-Weyl geometry, the Bach tensor and conformal scalar curvature. J. Reine Angew. Math. 441, 99–113 (1993)MathSciNetMATHGoogle Scholar
  17. 17.
    Tod K.P.: Compact 3-dimensional Einstein-Weyl structures. J. London Math. Soc. 45(2), 341–351 (1992)MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Wang J., Wang M.Y.: Einstein metrics on S 2-bundles. Math. Ann. 310, 497–526 (1998)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© The Author(s) 2012

Authors and Affiliations

  1. 1.Institute of MathematicsCracow University of TechnologyKrakówPoland

Personalised recommendations