Advertisement

Annals of Global Analysis and Geometry

, Volume 41, Issue 2, pp 253–263 | Cite as

Nonnegatively curved fixed point homogeneous 5-manifolds

  • Fernando Galaz-Garcia
  • Wolfgang Spindeler
Article

Abstract

Let G be a compact Lie group acting effectively by isometries on a compact Riemannian manifold M with nonempty fixed point set Fix(M, G). We say that the action is fixed point homogeneous if G acts transitively on a normal sphere to some component of Fix(M, G), equivalently, if Fix(M, G) has codimension one in the orbit space of the action. We classify up to diffeomorphism closed, simply connected 5-manifolds with nonnegative sectional curvature and an effective fixed point homogeneous isometric action of a compact Lie group.

Keywords

Nonnegative curvature Circle action 5-manifold Fixed point homogeneous 

Mathematics Subject Classification (2000)

53C20 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barden D.: Simply connected five-manifolds. Ann. Math. 82(3), 365–385 (1965)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Berard-Bergery L.: Les variétés Riemanniennes homogènes simplement connexes de dimension impaire á courboure strictement positive. J. Math. Pures Appl. 55(1), 47–67 (1976)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Bredon G.E.: Introduction to Compact Transformation Groups, Pure and Applied Mathematics, vol. 46. Academic Press, New York, London (1972)Google Scholar
  4. 4.
    Burago D., Yuri B., Ivanov S.: A Course in Metric Geometry, Graduate Studies in Mathematics, vol. 33. American Mathematical Society, Providence, RI (2001)Google Scholar
  5. 5.
    Cheeger J., Gromoll D.: On the structure of complete manifolds of nonnegative curvature. Ann. Math. 96(2), 413–443 (1972)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Galaz-Garcia, F.: Nonnegatively curved fixed point homogeneous manifolds in low dimensions. Geom. Dedicata, to appear. arXiv:0911.1254v1 [math.DG]Google Scholar
  7. 7.
    Galaz-Garcia, F., Searle, C.: Nonnegatively curved 5-manifolds with almost maximal symmetry rank. Preprint (2011) (see arXiv:0906.3870v1 [math.DG])Google Scholar
  8. 8.
    Grove, K.: Critical point theory for distance functions. Differential geometry: Riemannian geometry (Los Angeles, CA, 1990), Proceedings of the Symposium in Pure Mathematics, vol. 54, Part 3, pp. 357–385. American Mathematical Society, Providence, RI (1993)Google Scholar
  9. 9.
    Grove, K.: Geometry of, and via, symmetries. Conformal, Riemannian and Lagrangian geometry (Knoxville, TN, 2000), University Lecture Series, vol. 27, pp. 31–53. American Mathematical Society, Providence, RI (2002)Google Scholar
  10. 10.
    Grove K., Searle C.: Positively curved manifolds with maximal symmetry-rank. J. Pure Appl. Algebr. 91(1–3), 137–142 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Grove K., Searle C.: Differential topological restrictions curvature and symmetry. J. Differ. Geom. 47(3), 530–559 (1997)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Grove K., Ziller W.: Curvature and symmetry of Milnor spheres. Ann. Math. 152(1), 331–367 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Grove K., Wilking B., Ziller W.: Positively curved cohomogeneity one manifolds and 3-Sasakian geometry. J. Differ. Geom. 78(1), 33–111 (2008)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Hamilton R.S.: Four-manifolds with positive curvature operator. J. Differ. Geom. 24(2), 153–179 (1986)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Hoelscher C.: Classification of cohomogeneity one manifolds in low dimensions. Pac. J. Math. 246(1), 129–185 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Kollár J.: Circle actions on simply connected 5-manifolds. Topology 45(3), 643–671 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Orlik, P., Raymond, F.: Actions of SO(2) on 3-manifolds, Proceedings of the Conference on Transformation Groups (New Orleans, La., 1967), pp. 297–318. Springer, New York (1968)Google Scholar
  18. 18.
    Perelman, G.: The entropy formula for the Ricci flow and its geometric applications. Preprint (2002), arXiv:math/0211159v1 [math.DG].Google Scholar
  19. 19.
    Perelman, G.: Ricci flow with surgery on three-manifolds. Preprint (2003), arXiv:math/0303109v1 [math.DG]Google Scholar
  20. 20.
    Raymond F.: Classification of the actions of the circle on 3-manifolds. Trans. Am. Math. Soc. 131, 51–78 (1968)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Searle C.: Cohomogeneity and positive curvature in low dimensions. Math. Z. 214(3), 491–498 (1993)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Searle C.: Corrigendum. Math. Z. 214(3), 491–498 (1993)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Searle C., Yang D.: On the topology of nonnegatively curved simply-connected 4-manifolds with continuous symmetry. Duke Math. J. 74(2), 547–556 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Smale S.: On the structure of 5-manifolds. Ann. Math. 75(2), 38–46 (1962)MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Verdiani L.: Cohomogeneity one Riemannian manifolds of even dimension with strictly positive sectional curvature, I. Math. Z. 241, 329–339 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Verdiani L.: Cohomogeneity one manifolds of even dimension with strictly positive sectional curvature. J. Differ. Geom. 68(1), 31–72 (2004)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Wallach N.: Compact homogeneous Riemannian manifolds with strictly positive curvature. Ann. Math. 96, 277–295 (1972)MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Wilking B.: Positively curved manifolds with symmetry. Ann. Math. 163(2), 607–668 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    Wilking, B.: Nonnegatively and positively curved manifolds. Surveys in differential geometry. vol. XI, Surveys in differential Geometry, vol. 11, pp. 25–62. International Press, Somerville, MA (2007)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Mathematisches InstitutWWU MünsterMünsterGermany

Personalised recommendations