Annals of Global Analysis and Geometry

, Volume 40, Issue 4, pp 389–409 | Cite as

On the geometry of spaces of oriented geodesics

  • Dmitri V. Alekseevsky
  • Brendan Guilfoyle
  • Wilhelm Klingenberg
Original Paper


Let M be either a simply connected pseudo-Riemannian space of constant curvature or a rank one Riemannian symmetric space, and consider the space L(M) of oriented geodesics of M. The space L(M) is a smooth homogeneous manifold and in this paper we describe all invariant symplectic structures, (para)complex structures, pseudo-Riemannian metrics and (para)Kähler structure on L(M).


Space of geodesics Homogeneous manifolds Pseudo-Riemannian metrics Symplectic structures Kähler structures 

Mathematics Subject Classification (2000)

Primary 53A25 Secondary 53B35 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arnold V.I.: Mathematical Methods of Classical Mechanics GTM. Springer, New York (1989)Google Scholar
  2. 2.
    Besse A.L.: Manifolds all of whose Geodesics are Closed, Ergebnisse der Mathematik und ihrer Grenzgebiete, 93. Springer, Berlin (1978)Google Scholar
  3. 3.
    Ferrand E.: Sur la structure symplectique de l’espace des géodésiques d’un espace de Hadamard. Geom. Dedicata 68, 79–89 (1997)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Georgiou N., Guilfoyle B.: On the space of oriented geodesics of hyperbolic 3-space. Rocky Mountain J. Math. 40, 1183–1219 (2010)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Godbillon C.: Geometrie differentielle et mechanique analytique. Herman, Paris (1969)MATHGoogle Scholar
  6. 6.
    Gorbatsevich V., Onishchik A.L., Vinberg E.B.: Foundations of Lie Theory and Lie Transformation Groups. Springer-Verlag, Berlin (1997)MATHGoogle Scholar
  7. 7.
    Guilfoyle B., Klingenberg W.: A Neutral Kähler structure on the space of oriented lines. J. London Math. Soc 72, 497–509 (2005)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Guilfoyle, B., Klingenberg, W.: Proof of the Carathéodory conjecture by mean curvature flow in the space of oriented affine lines. math.DG/0808.0851 (2008)Google Scholar
  9. 9.
    Hitchin N.J.: Monopoles and geodesics. Comm. Math. Phys 83, 579–602 (1982)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Kobayashi S., Nomizu K.: Foundations of Differential Geometry, vol. II. Wiley and Sons, New York (1996)Google Scholar
  11. 11.
    Potmann H., Wallner J.: Computational Line Geometry. Springer Verlag, Berlin (2001)Google Scholar
  12. 12.
    Reznikov A.: The weak Blaschke conjecture for CP(n). Invent. Math 117, 447–454 (1994)MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Reznikov A.: Symplectic twistor spaces. Ann. Global Anal. Geom. 11, 109–118 (1993)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Salvai M.: On the geometry of the space of oriented lines in Euclidean space. Manuscripta Math. 118, 181–189 (2005)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Salvai M.: Geometry of the space of oriented lines in hyperbolic space. Glasg. Math. J. 49, 357–366 (2007)MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Study E.: Von den Bewegungen und Umlegungen I, II. Math. Ann. 34, 441–566 (1891)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Synge J.L.: Principles of Mechanics. Dover, New York (1959)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Dmitri V. Alekseevsky
    • 1
  • Brendan Guilfoyle
    • 2
  • Wilhelm Klingenberg
    • 3
  1. 1.School of Mathematics and Maxwell Insitute for Mathematical Sciences, The Kings Buildings, JCMBUniversity of EdinburghEdinburghUK
  2. 2.Department of Computing and MathematicsIT TraleeTralee County KerryIreland
  3. 3.School of Mathematical SciencesUniversity of DurhamDurhamUK

Personalised recommendations