Advertisement

Annals of Global Analysis and Geometry

, Volume 37, Issue 4, pp 379–391 | Cite as

Extrinsically immersed symplectic symmetric spaces

  • Tom Krantz
  • Lorenz J. SchwachhöferEmail author
Article

Abstract

Let (V, Ω) be a symplectic vector space and let \({\phi : M \rightarrow V}\) be a symplectic immersion. We show that \({\phi(M) \subset V}\) is locally an extrinsic symplectic symmetric space (e.s.s.s.) in the sense of Cahen et al. (J Geom Phys 59(4):409f́b-425, 2009) if and only if the second fundamental form of \({\phi}\) is parallel. Furthermore, we show that any symmetric space, which admits an immersion as an e.s.s.s., also admits a full such immersion, i.e., such that \({\phi(M)}\) is not contained in a proper affine subspace of V, and this immersion is unique up to affine equivalence. Moreover, we show that any extrinsic symplectic immersion of M factors through to the full one by a symplectic reduction of the ambient space. In particular, this shows that the full immersion is characterized by having an ambient space V of minimal dimension.

Keywords

Extrinsic symmetric spaces Symplectic immersions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cahen M., Gutt S., Richard N., Schwachhöfer L.J.: Extrinsic symplectic symmetric spaces. J. Geom. Phys. 59(4), 409–425 (2009)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Cartan É.: Sur une classe remarquable d’espaces de Riemann. Bull. Soc. Math. France 54, 214–264 (1926)MathSciNetGoogle Scholar
  3. 3.
    Cartan É.: Sur une classe remarquable d’espaces de Riemann. Bull. Soc. Math. France 55, 114–134 (1927)MathSciNetGoogle Scholar
  4. 4.
    Cartan É.: Sur une classe remarquable d’espaces de Riemann. ou Oeuvres complètes tome I 2, 587–659 (1927)Google Scholar
  5. 5.
    Ferus D.: Immersions with parallel second fundamental form. Math. Z. 140, 87–92 (1974)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Ferus D.: Symmetric submanifolds of Euclidean space. Math. Ann. 247, 81–93 (1980)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    García A.N., Sánchez C.U.: On extrinsic symmetric CR-structures on the manifolds of complete flags. Beiträge Algebra Geom. 45(2), 401–414 (2004)zbMATHGoogle Scholar
  8. 8.
    Helgason, S.: Differential Geometry, Lie Groups, and Symmetric Spaces. Graduate Studies in Mathematics, vol. 34. AMS, Providence, RI (2001)Google Scholar
  9. 9.
    Kath, I.: Indefinite extrinsic symmetric spaces. Preprint (2008), arXiv:0809.4713v2Google Scholar
  10. 10.
    Kim, J.R.: Indefinite extrinsic symmetric spaces. Dissertation, Aachen (2005)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Fakultät für MathematikTechnische Universität DortmundDortmundGermany

Personalised recommendations