Annals of Global Analysis and Geometry

, Volume 37, Issue 3, pp 275–306

The eta invariant and equivariant bordism of flat manifolds with cyclic holonomy group of odd prime order

  • Peter B. Gilkey
  • Roberto J. Miatello
  • Ricardo A. Podestá
Article

Abstract

We study the eta invariants of compact flat spin manifolds of dimension n with holonomy group \({\mathbb{Z}_p}\), where p is an odd prime. We find explicit expressions for the twisted and relative eta invariants and show that the reduced eta invariant is always an integer, except in a single case, when p = n = 3. We use the expressions obtained to show that any such manifold is trivial in the appropriate reduced equivariant spin bordism group.

Keywords

Flat manifolds Eta invariant Equivariant bordism 

Mathematics Subject Classification (2000)

58J53 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ambrose W., Singer I.M.: A theorem on holonomy. Trans. Am. Math. Soc. 75, 428–443 (1953)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Anderson D.W., Brown E.H. Jr, Peterson F.P.: Spin cobordism. Bull. Am. Math. Soc. 72, 256–260 (1966)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Anderson D.W., Brown E.H. Jr, Peterson F.P.: The structure of the Spin cobordism ring. Ann. Math. 86, 271–298 (1967)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Atiyah M.F., Patodi F.K., Singer I.M.: Spectral asymmetry and Riemannian geometry I. Math. Proc. Camb. Phil. Soc. 77, 43–69 (1975)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Bahri A., Bendersky M., Davis D., Gilkey P.: The complex bordism of groups with periodic cohomology. Trans. Am. Math. Soc. 316, 673–687 (1989)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Bahri A., Bendersky M., Gilkey P.: The relationship between complex bordism and K-theory for groups with periodic cohomology. Contemp. Math. 96, 19–31 (1989)MathSciNetGoogle Scholar
  7. 7.
    Botvinnik B., Gilkey P., Stolz S.: The Gromov–Lawson–Rosenberg conjecture for groups with periodic cohomology. J. Differ. Geom. 46, 374–405 (1997)MATHMathSciNetGoogle Scholar
  8. 8.
    Brown H., Bülow R., Neubüser J., Wondratschok H., Zassenhaus H.: Crystallographic Groups of Four-Dimensional Space. Wiley, New York (1978)MATHGoogle Scholar
  9. 9.
    Charlap L.: Compact flat Riemannian manifolds I. Ann. Math. 81, 15–30 (1965)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Charlap L.: Bieberbach Groups and Flat Manifolds. UTM, Springer, New York (1988)Google Scholar
  11. 11.
    Cid C., Schulz T.: Computation of five and six dimensional Bieberbach groups. Exp. Math. 10, 109–115 (2001)MATHMathSciNetGoogle Scholar
  12. 12.
    Conway J.H., Rossetti J.P.: Describing the platycosms. Math. Res. Lett. 13, 475–494 (2006)MATHMathSciNetGoogle Scholar
  13. 13.
    Friedrich, T.: Dirac operator in Riemannian geometry, Vol. 25. Graduate Studies in Mathematics. American Mathematical Society, Providence, RI (1997)Google Scholar
  14. 14.
    Gilkey P.B.: The residue of the global η function at the origin. Adv. Math. 40, 290–307 (1981)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Gilkey P.B.: The Geometry of Spherical Space Form Groups Series in Pure Mathematics, vol. 7. World Scientific, Singapore (1988)Google Scholar
  16. 16.
    Gilkey P.B.: Invariance Theory, the Heat Equation and The Atiyah-Singer Index Theorem, 2nd ed. Studies in Advanced Mathematics. CRC Press, Boca Raton (1995)Google Scholar
  17. 17.
    Gilkey P., Leahy J., Park J.H.: Spectral Geometry, Riemannian Submersions, and the Gromov–Lawson Conjecture. CRC Press, Boca Raton (1999)MATHGoogle Scholar
  18. 18.
    Hantzsche W., Wendt H.: Dreidimensionale euklidische Raumformen. Math. Ann. 10, 593–611 (1935)CrossRefMathSciNetGoogle Scholar
  19. 19.
    Lawson H.B., Michelsohn M.L.: Spin Geometry. Princeton University Press, Princeton (1989)MATHGoogle Scholar
  20. 20.
    Lichnerowicz A.: Spineurs harmoniques. C. R. Acad. Sci. Paris 257, 7–9 (1963)MATHMathSciNetGoogle Scholar
  21. 21.
    Miatello R.J., Podestá R.A.: Spin structures and spectra of \({\mathbb {Z}_2^k}\)-manifolds. Math. Zeitschrift 247, 319–335 (2004)MATHCrossRefGoogle Scholar
  22. 22.
    Miatello R.J., Podestá R.A.: The spectrum of twisted Dirac operators on compact flat manifolds. Trans. Amer. Math. Soc. 358, 4569–4603 (2006)MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Miatello R.J., Podestá R.A.: Eta invariants and class numbers. Pure Appl. Math. Q. 5, 1–26 (2009)MathSciNetGoogle Scholar
  24. 24.
    Miatello, R.J., Rossetti, J.P.: Spectral properties of flat manifolds. In: Gordon, C.S., Tirao, J.A., Vargas, J., Wolf, J.A. (eds.) New developments in Lie theory and geometry. Sixth Workshop on Lie theory and Geometry, November 13–17 2007, Cruz Chica, Córdoba, Argentina. Contemporary Mathematics, vol. 491, pp. 83–113 (2009)Google Scholar
  25. 25.
    Pfäffle F.: The Dirac spectrum of Bieberbach manifolds. J. Geom. Phys. 35, 367–385 (2000)MATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Reiner I.: Integral representations of cyclic groups of prime order. Proc. Am. Math. Soc. 8, 142–145 (1957)MATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Sadowski M., Szczepanski A.: Flat manifolds, harmonic spinors and eta invariants. Adv. Geom. 6, 287–300 (2006)MATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Seeley R.T.: Complex powers of an elliptic operator. Singular integrals. Proc. Sympos. Pure Math. 10, 288–307 (1967)MathSciNetGoogle Scholar
  29. 29.
    Stolz S.: Simply connected manifolds of positive scalar curvature. Ann. Math. 136, 511–540 (1992)CrossRefMathSciNetGoogle Scholar
  30. 30.
    Thom R.: Quelques propriétés globales des variétés différentiables. Comment. Math. Helv. 28, 17–86 (1954)MATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    Vasquez A.: Flat Riemannian manifolds. J. Differ. Geom. 4, 367–382 (1970)MATHMathSciNetGoogle Scholar
  32. 32.
    Wolf J.: Spaces of Constant Curvature. McGraw-Hill, New York (1967)MATHGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Peter B. Gilkey
    • 1
  • Roberto J. Miatello
    • 2
  • Ricardo A. Podestá
    • 2
  1. 1.Mathematics DepartmentUniversity of OregonEugeneUSA
  2. 2.FaMAF – CIEM, Universidad Nacional de CórdobaCórdobaArgentina

Personalised recommendations