Advertisement

Annals of Global Analysis and Geometry

, Volume 36, Issue 1, pp 67–79 | Cite as

Spectral bounds for Dirac operators on open manifolds

  • Christian BärEmail author
Original Paper

Abstract

We extend several classical eigenvalue estimates for Dirac operators on compact manifolds to noncompact, even incomplete manifolds. This includes Friedrich’s estimate for manifolds with positive scalar curvature as well as the author’s estimate on surfaces.

Keywords

Dirac operators Point spectrum Continuous spectrum Discrete spectrum Essential spectrum Killing spinor Friedrich inequality Lichnerowicz inequality 

Mathematics Subject Classification (2000)

53C27 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anghel N.: An abstract index theorem on non-compact Riemannian manifolds. Houst. J. Math. 19, 223–237 (1993)zbMATHMathSciNetGoogle Scholar
  2. 2.
    Bär, C.: Das Spektrum von Dirac-Operatoren. Dissertation, Universität Bonn 1990. Bonner Mathematische Schriften 217 (1991)Google Scholar
  3. 3.
    Bär C.: Lower eigenvalue estimate for Dirac operators. Math. Ann. 293, 39–46 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Bär C.: The Dirac operator on hyperbolic manifolds of finite volume. J. Diff. Geom. 54, 439–488 (2000)zbMATHGoogle Scholar
  5. 5.
    Baum H., Friedrich T., Grunewald R., Kath I.: Twistor and Killing spinors on Riemannian manifolds. Teubner Verlag, Stuttgart-Leipzig (1991)Google Scholar
  6. 6.
    Friedrich T.: Der erste Eigenwert des Dirac-Operators einer kompakten Riemannschen Mannigfaltigkeit nicht-negativer Krümmung. Math. Nachr. 97, 117–146 (1980)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Gromov M., Lawson H.B.: Positive scalar curvature and the Dirac operator on complete Riemannian manifolds. Publ. Math. Inst. Hautes Etud. Sci. 58, 295–408 (1983)Google Scholar
  8. 8.
    Große, N.: The Hijazi inequality on conformally parabolic manifolds. arXiv:0804.3878v2Google Scholar
  9. 9.
    Große, N.: On a spin conformal invariant on open manifolds. Dissertation. Universität Leipzig (2008)Google Scholar
  10. 10.
    Hijazi O.: A conformal lower bound for the smallest eigenvalue of the Dirac operator and killing spinors. Commun. Math. Phys. 104, 151–162 (1986)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Hijazi, O.: Spectral properties of the Dirac operator and geometrical structures. Proceedings of the Summer School on Geometric Methods. In: Quantum Field Theory, Villa de Leyva, Colombia, July 12–30, World Scientific, 2001 (1999)Google Scholar
  12. 12.
    Lawson, H.B., Michelsohn, M.-L.: Spin Geometry. Princeton University Press (1989)Google Scholar
  13. 13.
    Lichnerowicz A.: Geometry of groups of transformations. Noordhoff International Publishing, Leyden (1977)zbMATHGoogle Scholar
  14. 14.
    Lott J.: Eigenvalue bounds for the Dirac operator. Pac. J. Math. 125, 117–126 (1986)zbMATHMathSciNetGoogle Scholar
  15. 15.
    Moroianu A., Moroianu S.: The Dirac spectrum on manifolds with gradient conformal vector fields. J. Funct. Anal. 253, 207–219 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Moroianu S.: Weyl laws on open manifolds. Math. Ann. 340, 1–21 (2008)CrossRefMathSciNetGoogle Scholar
  17. 17.
    Roe J.: Elliptic Operators, Topology and Asymptotic Methods, 2nd edn. Addison Wesley Longman, Harlow (1998)zbMATHGoogle Scholar
  18. 18.
    Weidmann J.: Lineare Operatoren in Hilberträumen, Teil I Grundlagen. Teubner Verlag, Stuttgart-Leipzig-Wiesbaden (2000)zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Universität Potsdam, Institut für MathematikPotsdamGermany

Personalised recommendations