Annals of Global Analysis and Geometry

, Volume 34, Issue 4, pp 403–414 | Cite as

Conformal and semi-conformal biharmonic maps

  • Paul Baird
  • Ali Fardoun
  • Seddik Ouakkas
Original Paper


We show that a conformal mapping between Riemannian manifolds of the same dimension n ≥ 3 is biharmonic if and only if the gradient of its dilation satisfies a certain second-order elliptic partial differential equation. On an Einstein manifold solutions can be generated from isoparametric functions. We characterise those semi-conformal submersions that are biharmonic in terms of their dilation and the fibre mean curvature vector field.


Conformal map Semi-conformal map Biharmonic map 

Mathematics Subject Classification (2000)

31B30 53A30 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aronszjan N.: A unique conitinuation theorem for solutions of elliptic partial differential inequalities. J. Math. Pures Appl. 36, 235–249 (1957)MathSciNetGoogle Scholar
  2. 2.
    Baird, P.: Harmonic maps with symmetry, harmonic morphisms and deformations of metrics. In: Research Notes in Mathematics, vol. 87. Pitman, Boston (1983)Google Scholar
  3. 3.
    Baird, P., Eells, J.: A conservation law for harmonic maps. In: Geometry Symposium Utrecht 1980, Lecture Notes in Math., vol. 894, pp. 1–25. Springer (1981)Google Scholar
  4. 4.
    Baird P., Kamissoko D.: On constructing biharmonic maps and metrics. Ann. Global Anal. Geom. 23, 65–75 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Baird, P., Wood, J.C.: Harmonic morphisms between Riemannian manifolds. Lond. Math. Soc. Monogr., New Series 29. Oxford University Press (2003)Google Scholar
  6. 6.
    Cartan E.: Familles de surfaces isoparamétriques dans les espaces à courbure constante. Ann. Math. Pura Appl. (4) 17, 177–191 (1938)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Chen B.Y.: Some open problems and conjectures on submanifolds of finite type. Soochow J. Math. 17, 169–188 (1991)zbMATHMathSciNetGoogle Scholar
  8. 8.
    Dimitric I.: Submanifolds of E n with harmonic mean curvature vector. Bull. Inst. Math. Acad. Sinica 20, 53–65 (1992)zbMATHMathSciNetGoogle Scholar
  9. 9.
    Hasanis T., Vlachos T.: Hypersurfaces in E 4 with harmonic mean curvature vector field. Math. Nachr. 172, 145–169 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Jiang G.Y.: 2-harmonic isometric immersions between Riemannian manifolds. Chinese Ann. Math. Ser. A 7(2), 130–144 (1986)zbMATHMathSciNetGoogle Scholar
  11. 11.
    Jiang G.Y.: 2-harmonic maps and their first and second variational formulas. Chinese Ann. Math. Ser. A 7(4), 389–402 (1986)zbMATHMathSciNetGoogle Scholar
  12. 12.
    Loubeau, E., Ou, Y.-L.: The characterization of biharmonic morphisms. In: Differential Geom. Appl. Proc. Conf. Opava (Czech Republic), 27–31 August, 2001, pp. 31–41. Silesian Univ. Opava (2001)Google Scholar
  13. 13.
    Montaldo S., Oniciuc C.: A short survey on biharmonic maps between Riemannian manifolds. Rev. Un. Mat. Argentina 47(2), 1–22 (2006)zbMATHMathSciNetGoogle Scholar
  14. 14.
    Oniciuc C.: Biharmonic maps between Riemannian manifolds. An. Stiint. Univ. Al. I. Cuza Iasi Mat. (N.S.) 48, 237–348 (2002)zbMATHMathSciNetGoogle Scholar
  15. 15.
    Ouakkas, S.: Géométrie conforme associée à quelques opérateurs d’ordre 4, thesis, in preparationGoogle Scholar
  16. 16.
    Ouakkas, S.: Biharmonic maps, conformal deformations and the Hopf maps. Diff. Geom. Appl. (to appear)Google Scholar
  17. 17.
    Thorbergsson, G.: A survey on isoparametric hypersurfaces and their generalizations. In: Handbook of Differential Geometry, vol. 1, pp. 963–995. Elsevier, Amsterdam (2000)Google Scholar
  18. 18.
    Wells R.O.: Differential Analysis on Complex Manifolds, Graduate Texts in Mathematics. Springer-Verlag, New York (1980)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Département de MathématiquesUniversité de Bretagne OccidentaleBrest CedexFrance

Personalised recommendations