Annals of Global Analysis and Geometry

, Volume 34, Issue 3, pp 287–299 | Cite as

Contact metric manifolds with η-parallel torsion tensor

  • Amalendu GhoshEmail author
  • Ramesh Sharma
  • Jong Taek Cho
Original Paper


We show that a non-Sasakian contact metric manifold with η-parallel torsion tensor and sectional curvatures of plane sections containing the Reeb vector field different from 1 at some point, is a (kμ)-contact manifold. In particular for the standard contact metric structure of the tangent sphere bundle the torsion tensor is η-parallel if and only if M is of constant curvature, in which case its associated pseudo-Hermitian structure is CR- integrable. Next we show that if the metric of a non-Sasakian (k, μ)-contact manifold (M, g) is a gradient Ricci soliton, then (M, g) is locally flat in dimension 3, and locally isometric to E n+1 × S n (4) in higher dimensions.


η-Parallel torsion tensor (kμ)-Contact manifold Tangent sphere bundle Ricci soliton Sasakian manifold 

Mathematics Subject Classification (2000)

53C15 53C25 53C21 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Blair, D.E. Riemannian geometry of contact and symplectic manifolds, Progress in Mathematics 203, Birkhäuser, Boston, Basel, Berlin (2002)Google Scholar
  2. 2.
    Blair, D.E., Koufogiorgos, T., Papantoniou, B.J.: Contact metric manifolds satisfying a nullity condition. Israel J. Math. 91, 189–214 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Blair, D.E., Sharma, R.: Generalization of Myer’s theorem on a contact manifold. Illinois J. Math. 34, 837–844 (1990)zbMATHMathSciNetGoogle Scholar
  4. 4.
    Boeckx, E.: A full classification of contact metric (k, μ)-spaces. Illinois J. Math. 44, 212–219 (2000)zbMATHMathSciNetGoogle Scholar
  5. 5.
    Boeckx, E., Cho, J.T.: η-Parallel contact metric spaces. Diff. Geom. Appl. 22, 275–285 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Boeckx, E., Cho, J.T., Chun, S.H.: Flow-invariant structures on unit tangent bundles. Publ. Math. Debrecen 70, 167–178 (2007)zbMATHMathSciNetGoogle Scholar
  7. 7.
    Boeckx, E., Vanhecke, L.: Characteristic reflections on unit tangent sphere bundles. Houston J. Math. 23, 427–448 (1997)zbMATHMathSciNetGoogle Scholar
  8. 8.
    Cartan, E.: Leçons sur la géométrie des espaces de Riemann. Gauthier-Villars, Paris (1946)zbMATHGoogle Scholar
  9. 9.
    Chern, S.S., Hamilton, R.S.: On Riemannian metrics adapted to three dimensional contact manifolds. Lecture Note in Mathematics, vol. 1111. pp. 279–308. Springer, BerlinGoogle Scholar
  10. 10.
    Chow, B., Knopf, D.: The Ricci flow: an introduction. Mathematical surveys and monographs 110. American Mathematical Society (2004)Google Scholar
  11. 11.
    Dombrowski, P.: On the geometry of the tangent bundle. J. Reine Angew. Math. 210, 73–88 (1962)zbMATHMathSciNetGoogle Scholar
  12. 12.
    Gray A.: Classification des variétés approximativement kählériennes de courbure sectionelle holomorphe constante. J. Reine Angew. Math. 279, 797–800 (1974)zbMATHGoogle Scholar
  13. 13.
    Kowalski, O.: Curvature of the induced Riemannian metric of the tangent bundle of a Riemannian manifold. J. Reine Angew. Math. 250, 124–129 (1971)zbMATHMathSciNetGoogle Scholar
  14. 14.
    Sharma, R.: Certain results on K-contact and (k, μ)-contact manifolds. J. Geom. (to appear)Google Scholar
  15. 15.
    Tanno, S.: The standard CR structure on the unit tangent bundle. Tôhoku Math. J. 44, 535–543 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Tanno, S.: Variational problems on contact Riemannian manifolds. Trans. Amer. Math. Soc. 314, 349–379 (1989)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Yano, K.: Integral formulas in Riemannian geometry. M. Dekker Inc. (1970)Google Scholar
  18. 18.
    Yano, K., Ishihara, S.: Tangent and cotangent bundles. M. Dekker Inc. (1973)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Department of MathematicsKrishnagar Government CollegeKrishnanagarIndia
  2. 2.Department of MathematicsUniversity of New HavenWest HavenUSA
  3. 3.Department of MathematicsChonnam National University, CNU The Institute of Basic SciencesGwangjuKorea

Personalised recommendations