Annals of Global Analysis and Geometry

, Volume 33, Issue 1, pp 11–18 | Cite as

Conformally Einstein products and nearly Kähler manifolds

  • Andrei Moroianu
  • Liviu OrneaEmail author
Original Paper


In the first part of this note we study compact Riemannian manifolds (M, g) whose Riemannian product with \({\mathbb{R}}\) is conformally Einstein. We then consider 6-dimensional almost Hermitian manifolds of type W 1 + W 4 in the Gray–Hervella classification admitting a parallel vector field and show that (under some mild assumption) they are obtained as Riemannian cylinders over compact Sasaki–Einstein 5-dimensional manifolds.


Conformally Einstein metrics Nearly Kähler structures Gray–Hervella classification 

Mathematics Subject Classification (2000)

Primary 53C15 53C25 53A30 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bär C. (1993). Real Killing spinors and holonomy. Commun. Math. Phys. 154: 509–521 zbMATHCrossRefGoogle Scholar
  2. 2.
    Besse A. (1987). Einstein Manifolds. Ergeb. Math. Grenzgeb. 10. Springer, Berlin Google Scholar
  3. 3.
    Brinkmann H.W. (1924). Riemann spaces conformal to Einstein spaces. Math. Ann. 91: 269–278 CrossRefMathSciNetzbMATHGoogle Scholar
  4. 4.
    Brinkmann H.W. (1925). Einstein spaces which are mapped conformally to each other. Math. Ann. 94: 119–145 CrossRefMathSciNetzbMATHGoogle Scholar
  5. 5.
    Butruille J.-B. (2005). Classification des variétés approximativement kähleriennes homogènes. Ann. Global Anal. Geom. 27: 201–225 zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Butruille, J.-B.: Espace de twisteurs réduit d’une variété presque hermitienne de dimension 6. math.DG/0503150 (2005)Google Scholar
  7. 7.
    Cleyton, R., Ivanov, S.: Conformal equivalence between certain geometries in dimension 6 and 7. math.DG/0607487 (2006)Google Scholar
  8. 8.
    Fernández, M., Ivanov, S., Muñoz, V., Ugarte, L.: Nearly hypo structures and compact nearly Kähler 6-manifolds with conical singularities. math.DG/0602160 (2006)Google Scholar
  9. 9.
    Friedrich T. and Ivanov S. (2002). Parallel spinors and connections with skew-symmetric torsion in string theory. Asian J. Math. 6: 303–335 zbMATHMathSciNetGoogle Scholar
  10. 10.
    Gover R. and Nurowski P. (2006). Obstructions to conformally Einstein metrics in n dimensions. J. Geom. Phys. 56: 450–484 zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Gray A. (1970). Nearly Kähler manifolds. J. Differential Geom. 4: 283–309 zbMATHGoogle Scholar
  12. 12.
    Gray A. (1976). The structure of nearly Kähler manifolds. Math. Ann. 223: 233–248 zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Gray A. and Hervella L.M. (1980). The sixteen classes of almost Hermitian manifolds and their local invariants. Ann. Mat. Pura Appl. 123: 35–58 zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Grünewald R. (1990). Six-dimensional Riemannian manifolds with real Killing spinors. Ann. Global Anal. Geom. 8: 48–59 CrossRefGoogle Scholar
  15. 15.
    Kühnel, W.: Conformal transformations between Einstein spaces. In: Conformal Geometry (Bonn, 1985/1986), Aspects Math., E12, pp. 105–146. Vieweg, Braunschweig (1988)Google Scholar
  16. 16.
    Listing M. (2001). Conformal Einstein spaces in N-dimensions. Ann Global Anal. Geom. 20: 183–197 zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Listing M. (2006). Conformal Einstein spaces in N-dimensions. II.. J. Geom. Phys. 56: 386–404 zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Matsumoto M. (1972). On 6-dimensional almost Tachibana spaces. Tensor (N.S.) 23: 250–252 zbMATHMathSciNetGoogle Scholar
  19. 19.
    Nagy and P.A. (2002). Nearly Kähler geometry and Riemannian foliations. Asian J. Math. 6: 481–504 zbMATHMathSciNetGoogle Scholar
  20. 20.
    Obata M. (1962). Certain conditions for a Riemannian manifold to be isometric with a sphere. J. Math. Soc. Japan 14: 333–339 zbMATHMathSciNetCrossRefGoogle Scholar
  21. 21.
    Ornea L. and Verbitsky M. (2003). Structure theorem for compact Vaisman manifolds. Math. Res. Lett. 10: 799–805 zbMATHMathSciNetGoogle Scholar
  22. 22.
    Verbitsky, M.: An intrinsic volume functional on almost complex 6-manifolds and nearly Kähler geometry. math.DG/0507179 (2005)Google Scholar

Copyright information

© Springer Science + Business Media B.V. 2007

Authors and Affiliations

  1. 1.Centre de MathémathiquesEcole PolytechniquePalaiseau CedexFrance
  2. 2.Faculty of MathematicsUniversity of BucharestBucharestRomania
  3. 3.Institute of Mathematics “Simion Stoilow” of the Romanian AcademyBucharestRomania

Personalised recommendations