Annals of Global Analysis and Geometry

, Volume 32, Issue 3, pp 253–275 | Cite as

Curved flats, pluriharmonic maps and constant curvature immersions into pseudo-Riemannian space forms

  • David BranderEmail author
Original Paper


We study two aspects of the loop group formulation for isometric immersions with flat normal bundle of space forms. The first aspect is to examine the loop group maps along different ranges of the loop parameter. This leads to various equivalences between global isometric immersion problems among different space forms and pseudo-Riemannian space forms. As a corollary, we obtain a non-immersibility theorem for spheres into certain pseudo-Riemannian spheres and hyperbolic spaces. The second aspect pursued is to clarify the relationship between the loop group formulation of isometric immersions of space forms and that of pluriharmonic maps into symmetric spaces. We show that the objects in the first class are, in the real analytic case, extended pluriharmonic maps into certain symmetric spaces which satisfy an extra reality condition along a totally real submanifold. We show how to construct such pluriharmonic maps for general symmetric spaces from curved flats, using a generalised DPW method.


Isometric immersions Space forms Pluriharmonic maps Loop groups 

Mathematics Subject Classification (2000)

Primary: 37K10 37K25 53C42 53B25 Secondary: 53C35 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barbosa J.L., Ferreira W., Tenenblat K. (1996) Submanifolds of constant sectional curvature in pseudo-Riemannian manifolds. Ann. Global Anal. Geom. 14: 381–401zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Brander D., Dorfmeister J.: The generalized DPW method and an application to isometric immersions of space forms. arxiv preprint:0604247 (2006)Google Scholar
  3. 3.
    Burstall F.E., Ferus D., Pedit F., Pinkall U. (1993) Harmonic tori in symmetric spaces and commuting Hamlitonian systems on loop algebras. Ann. Math. 138 (2): 173–212zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Chen Q., Zuo D.F., Cheng Y. (2004) Isometric immersions of pseudo-Riemannian space forms. J. Geom. Phys. 52(3): 241–262zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Dorfmeister J., Eschenburg J.H. (2003) Pluriharmonic maps, loop groups and twistor theory. Ann. Global Anal. Geom. 24: 301–321zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Dorfmeister J., Pedit F., Wu H. (1998) Weierstrass type representation of harmonic maps into symmetric spaces. Comm. Anal. Geom. 6: 633–668zbMATHMathSciNetGoogle Scholar
  7. 7.
    Ferus D., Pedit F. (1996) Curved flats in symmetric spaces. Manuscripta Math. 91: 445–454zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Ferus D., Pedit F. (1996) Isometric immersions of space forms and soliton theory. Math. Ann. 305: 329–342zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Fordy, A.P., Wood, J.C. (eds.): Harmonic Maps and Integrable systems. Aspects of mathematics. Vieweg (1994)Google Scholar
  10. 10.
    Hilbert D. (1901) Ueber Flaechen von constanter Gaussscher Kruemmung. Trans. Amer. Math. Soc. 2: 87–99CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Li H. (1997) Global rigidity theorems of hypersurfaces. Ark. Mat. 35(2): 327–351zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Moore J. (1972) Isometric immersions of space forms in space forms. Pacific J. Math. 40, 157–166zbMATHMathSciNetGoogle Scholar
  13. 13.
    Nikolayevsky Y. (1998) A non-immersion theorem for a class of hyperbolic manifolds. Differential Geom. Appl. 9, 239–242zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Ohnita Y., Valli G. (1990) Pluriharmonic maps into compact lie groups and factorization into unitons. Proc. London Math. Soc. 61(3): 546–570zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Pedit F. (1988) A nonimmersion theorem for spaceforms. Comment. Math. Helv. 63(4): 672–674zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Pressley A., Segal G. (1986) Loop Groups. Oxford Math. monographs. Clarendon Press, OxfordGoogle Scholar
  17. 17.
    Tenenblat K., Terng C.L. (1980) Baecklund’s theorem for n-dimensional submanifolds of R 2n-1. Ann. Math. 111, 477–490CrossRefMathSciNetGoogle Scholar
  18. 18.
    Terng C.L. (1980) A higher dimensional generalisation of the sine-Gordon equation and its soliton theory. Ann. Math. 111, 491–510CrossRefMathSciNetGoogle Scholar
  19. 19.
    Toda, M.: Pseudospherical Surfaces via Moving Frames and Loop Groups. PhD Thesis. University of Kansas (2000)Google Scholar
  20. 20.
    Uhlenbeck K. (1989) Harmonic maps into lie groups: classical solutions of the chiral model. J. Differential Geom. 30, 1–50zbMATHMathSciNetGoogle Scholar
  21. 21.
    Wolf, J.: Spaces of Constant Curvature. Publish or Perish (1977)Google Scholar
  22. 22.
    Xavier F. (1985) A nonimmersion theorem for hyperbolic manifolds. Comment. Math. Helv., 60(2): 280–283zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science + Business Media B.V. 2007

Authors and Affiliations

  1. 1.Department of Mathematics, Faculty of ScienceKobe UniversityKobeJapan

Personalised recommendations