Annals of Global Analysis and Geometry

, Volume 31, Issue 4, pp 345–362

An extension of Barta’s Theorem and geometric applications

Original Paper

Abstract

We prove an extension of a theorem of Barta and we give some geometric applications. We extend Cheng’s lower eigenvalue estimates of normal geodesic balls. We generalize Cheng-Li-Yau eigenvalue estimates of minimal submanifolds of the space forms. We show that the spectrum of the Nadirashvili bounded minimal surfaces in \(\mathbb{R}^{3}\) have positive lower bounds. We prove a stability theorem for minimal hypersurfaces of the Euclidean space, giving a converse statement of a result of Schoen. Finally we prove generalization of a result of Kazdan–Kramer about existence of solutions of certain quasi-linear elliptic equations.

Keywords

Bartas’s Theorem Cheng’s Eigenvalue Comparison Theorem Spectrum of Nadirashvili minimal surfaces Stability of minimal hypersurfaces 

Mathematics Subject Classification (2000)

58C40 53C42 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barta J. (1937) Sur la vibration fundamentale d’une membrane. C. R. Acad. Sci. 204, 472–473Google Scholar
  2. 2.
    Berger M., Gauduchon P., Mazet E. (1974) Le Spectre d’une Variété Riemannienes. Lect. Notes Math. 194, Springer-VerlagGoogle Scholar
  3. 3.
    Bessa G.P., Montenegro J.F. (2003) Eigenvalue estimates for submanifolds with locally bounded mean curvature. Ann. Global Anal. and Geom. 24, 279–290MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Bishop R., Crittenden R. (1964) Geometry of Manifolds. Academic Press, New YorkMATHGoogle Scholar
  5. 5.
    Chavel I. (1984) Eigenvalues in Riemannian Geometry. Pure and Applied Mathematics, Academic Press, INCGoogle Scholar
  6. 6.
    Cheng S.Y. (1975) Eigenfunctions and eigenvalues of the Laplacian. Am. Math. Soc Proc. Symp. Pure Math. 27, part II, 185–193Google Scholar
  7. 7.
    Cheung L.-F., Leung P.-F. (2001) Eigenvalue estimates for submanifolds with bounded mean curvature in the hyperbolic space. Math. Z. 236, 525–530MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Cheng S.Y., Li P., Yau S.T. (1984) Heat equations on minimal submanifolds and their applications. Amer. J. Math. 106, 1033–1065MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Fischer-Colbrie D., Schoen R. (1980) The structure of complete stable minimal surfaces in 3-manifolds of non negative scalar curvature. Comm. Pure and Appl. Math. 33, 199–211MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Grigoryan A. (1999) Analytic and geometric background of recurrence and non-explosion of the brownian motion on Riemannian manifolds, Bull. Amer. Math. Soc. 36(2):135–249MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Kasue A. (1984) On a lower bound for the first eigenvalue of the Laplace operator on a Riemannian manifold. Ann. Sci. éc. Norm. Sup. 17, 31–44MATHMathSciNetGoogle Scholar
  12. 12.
    Kazdan J., Kramer R. (1978) Invariant Criteria for existence of solutions to second-order quasilinear elliptic equations. Comm. Pure. Appl. Math. 31(5):619–645MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Kazdan J., Warner F.W. (1975) Remarks on some quasilinear elliptic equations. Comm. Pure Appl. Math. 28, 567–597MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Jorge L., Koutrofiotis D. (1980) An estimate for the curvature of bounded submanifolds. Amer. J. Math. 103(4):711–725CrossRefGoogle Scholar
  15. 15.
    McKean H.P. (1970) An upper bound for the spectrum of \({\triangle}\) on a manifold of negative curvature. J. Differ. Geom. 4, 359–366MATHMathSciNetGoogle Scholar
  16. 16.
    Matilla P. Geometry of Sets and Measures in Euclidean Spaces. Cambridge University Press (1995).Google Scholar
  17. 17.
    Nadirashvili N. (1996) Hadamard’s and Calabi-Yau’s conjectures on negatively curved and minimal surfaces. Invent. Math. 126, 457–465MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Schoen R.: Stable minimal surfaces in three manifolds. Seminar on Minimal Submanifolds. Annals of Math Studies. Princeton University Press.Google Scholar
  19. 19.
    Schoen, R., Yau, S.T.: Lectures on Differential Geometry. Conference Proceedings and Lecture Notes in Geometry and Topology, vol. 1, 1994.Google Scholar
  20. 20.
    Yau S.T. (2000) Review of Geometry and Analysis Asian, J Math 4(1): 235–278MATHMathSciNetGoogle Scholar
  21. 21.
    Whitney H. (1957) Geometric Integration Theory. Princeton Mathematical Series, Princeton University PressMATHGoogle Scholar

Copyright information

© Springer Science + Business Media B.V. 2007

Authors and Affiliations

  1. 1.Departamento de MatematicaUniversidade Federal do Ceará-UFCFortaleza-CearáBrazil

Personalised recommendations