Advertisement

Annals of Global Analysis and Geometry

, Volume 28, Issue 2, pp 201–209 | Cite as

Centers of Convex Subsets of Buildings

  • Andreas Balser
  • Alexander Lytchak
Article

Abstract

We prove that two-dimensional convex subsets of spherical buildings are either buildings or have a center.

Key Words

isometry groups fixed points CAT(1)-spaces buildings 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ballmann, W. and Brin, M.: Diameter rigidity of spherical polyhedra, Duke Math. J. 122 (1999), 597–609.Google Scholar
  2. 2.
    Balser, A. and Lytchak, A.: Building-like spaces, 2004, Preprint; Arxiv: {math.MG/0410437}.Google Scholar
  3. 3.
    Bridson, M. R. and Haefliger, A.: 1999, Metric Spaces of Non-Positive Curvature, Springer, Berlin.Google Scholar
  4. 4.
    Fujiwara, K., Nagano, K. and Shioya, T.: Fixed points sets of parabolic isometries of CAT(0)-spaces, 2004, Preprint; Arxiv: {math.DG/0408347}.Google Scholar
  5. 5.
    Kleiner, B.: The local structure of length spaces with curvature bounded above, Math. Z. 231(3) (1999), 409–456.Google Scholar
  6. 6.
    Kleiner, B. and Leeb, B.: Rigidity of quasi-isometries for symmetric spaces and Euclidean buildings, Inst. Hautes Études Sci. Publ. Math. 86 (1997), 115–197.Google Scholar
  7. 7.
    Kleiner, B. and Leeb, B.: Rigidity of invariant convex sets in symmetric spaces, 2004, Preprint; Arxiv: {math.DG/0412123}.Google Scholar
  8. 8.
    Lang, U. and Schroeder, V.: Jung's theorem for Alexandrov spaces of curvature bounded above, Ann. Global Anal. Geom. 15(3) (1997), 263–275.Google Scholar
  9. 9.
    Lytchak, A.: Rigidity of spherical buildings and joins, Geom. Funct. Anal. 15(3) (2005), to appear.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Mathematisches Institut, LMU MünchenMunichGermany
  2. 2.Mathematisches InstitutUniversität BonnBonnGermany

Personalised recommendations