Advertisement

Pollen season trends in winter flowering trees in South Spain

Abstract

The present work has studied the trends in pollen seasons of winter flowering trees (Alnus, Cupressaceae, Fraxinus, Populus and Ulmus) in Córdoba, Granada and Málaga (Andalusia, Spain) over the years 1994–2017. The influence of meteorological parameters on the seasonal airborne pollen has been also analyzed. Pollen concentrations were recorded using Hirst-type volumetric spore traps, following the standardized methodology of the Spanish Aerobiology Network and the European Aerobiology Society. The nonparametric Mann–Kendall test and the nonparametric Sen’s method have been used to study linear trends for pollen season timing and intensity, and for temperature and rainfall. Significance was determined using the F-test. Spearman analyses were applied to test for correlations between pollen season parameters and weather-related factors before and over the pollen season. The results obtained suggest that flowering has delayed over recent years, especially for trees with a bloom closer to spring (poplar and elm). Earlier flowering species are more influenced by the meteorological parameters before the flowering. However, species blooming later are more influenced by the meteorological parameters during the pollen season. Meteorological parameters affect more the interior cities than the coastal city.

This is a preview of subscription content, log in to check access.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1
Fig. 2

References

  1. Agencia Estatal de Meteorología. (2010). Guía Resumida del Clima en España (1981–2010).

  2. Anderson, J. T., Inouye, D. W., McKinney, A. M., Colautti, R. I., & Mitchell-Olds, T. (2012). Phenotypic plasticity and adaptive evolution contribute to advancing flowering phenology in response to climate change. Proceedings of the Royal Society of London B: Biological Sciences,279, 3843–3852.

  3. Ariano, R., Canonica, G. W., & Passalacqua, G. (2010). Possible role of climate changes in variations in pollen seasons and allergic sensitizations during 27 years. Annals of Allergy, Asthma & Immunology,104(3), 215–222.

  4. Bellard, C., Bertelsmeier, C., Leadley, P., Thuiller, W., & Courchamp, F. (2012). Impacts of climate change on the future of biodiversity. Ecology Letters,15(4), 365–377.

  5. Bogawski, P., Grewling, Ł., Nowak, M., Smith, M., & Jackowiak, B. (2014). Trends in atmospheric concentrations of weed pollen in the context of recent climate warming in Poznań (Western Poland). International Journal of Biometeorology,58(8), 1759–1768.

  6. Bousquet, J., O'Hehir, R. E., Anto, J. M., D'Amato, G., Mösges, R., Hellings, P. W., et al. (2017). Assessment of thunderstorm-induced asthma using Google Trends. Journal of Allergy and Clinical Immunology,140(3), 891–893.

  7. Cariñanos, P., & Casares-Porcel, M. (2011). Urban green zones and related pollen allergy: A review. Some guidelines for designing spaces with low allergy impact. Landscape and Urban Planning,101(3), 205–214.

  8. Charpin, D., Calleja, M., Lahoz, C., Pichot, C., & Waisel, Y. (2005). Allergy to cypress pollen. Allergy,60(3), 293–301.

  9. Clot, B. (2003). Trends in airborne pollen: An overview of 21 years of data in Neuchâtel (Switzerland). Aerobiologia,19(3), 227–234.

  10. Cook, B. I., Wolkovich, E. M., & Parmesan, C. (2012). Divergent responses to spring and winter warming drive community level flowering trends. Proceedings of the National Academy of Sciences,109(23), 9000–9005.

  11. D'Amato, M., Vitale, C., Molino, A., Sanduzzi, A., Mormile, M., Vatrella, A., et al. (2016). Climate change, thunderstorms and asthma attacks during the pollen seasons. International Journal on Immunorehabilitation,18(2), 97–100.

  12. Di Felice, G., Barletta, B., Tinghino, R., & Pini, C. (2001). Cupressaceae pollinosis: Identification, purification and cloning of relevant allergens. International Archives of Allergy and Immunology,125(4), 280–289.

  13. Díaz de la Guardia, C., Alba, F., de Linares, C., Nieto-Lugilde, D., & López, C. J. (2006). Aerobiological and allergenic analysis of Cupressaceae pollen in Granada (Southern Spain). Journal of Investigational Allergology and Clinical Immunology,16(1), 24–33.

  14. Díaz de la Guardia, C., Alba-Sánchez, F., Linares Fernández, C. D., Nieto-Lugilde, D., & López Caballero, J. (2006). Aerobiological and allergenic analysis of Cupressaceae pollen in Granada (Southern Spain). Journal of Investigational Allergology and Clinical Immunology,16(1), 24–33.

  15. Dommee, B., Geslot, A., Thompson, J. D., Reille, M., & Denelle, N. (1999). Androdioecy in the entomophilous tree Fraxinus ornus (Oleaceae). The New Phytologist,143(2), 419–426.

  16. Emberlin, J., Detandt, M., Gehrig, R., Jaeger, S., Nolard, N., & Rantio-Lehtimäki, A. (2002). Responses in the start of Betula (birch) pollen seasons to recent changes in spring temperatures across Europe. International Journal of Biometeorology,46, 159–170.

  17. Emberlin, J., Smith, M., Close, R., & Adams-Groom, B. (2007). Changes in the pollen seasons of the early flowering trees Alnus spp. and Corylus spp. in Worcester, United Kingdom, 1996–2005. International Journal of Biometeorology,51(3), 181.

  18. Fernández-Llamazares, Á., Belmonte, J., Boada, M., & Fraixedas, S. (2014). Airborne pollen records and their potential applications to the conservation of biodiversity. Aerobiologia,30(2), 111–122.

  19. Franks, S. J., Weber, J. J., & Aitken, S. N. (2014). Evolutionary and plastic responses to climate change in terrestrial plant populations. Evolutionary Applications,7(1), 123–139.

  20. Galán, C., Cariñanos, P., & Alcázar, D.-V. (2007). Spanish Aerobiology Network (REA): Management and quality manual. Universidad de Córdoba: Servicio de Publicaciones.

  21. Galán C, Smith M, Thibaudon M, Frenguelli G, Oteros J, Gehrig R & EAS QC Working Group. (2014). Pollen monitoring: Minimum requirements and reproducibility of analysis. Aerobiologia,30(4), 385–395.

  22. Galán, C., Alcázar, P., Oteros, J., García-Mozo, H., Aira, M. J., Belmonte, J., et al. (2016). Airborne pollen trends in the Iberian Peninsula. Science of the Total Environment,550, 53–59.

  23. García-Mozo, H., Mestre, A., & Galán, C. (2011). Climate change in Spain: Phenological trends in southern areas. In J. Blanco & H. Kheradmand (Eds.), Climate change—Socioeconomic effects (p. 237). London: IntechOpen.

  24. García-Mozo, H., Galán, C., Alcázar, P., de la Guardia, C. D., Nieto-Lugilde, D., Recio, M., et al. (2010). Trends in grass pollen season in southern Spain. Aerobiologia,26(2), 157–169.

  25. García-Mozo, H., Mestre, A., & Galán, C. (2010). Phenological trends in southern Spain: A response to climate change. Agricultural and Forest Meteorology,150(4), 575–580.

  26. González-Ruiz, R. (1998). Consideraciones sobre la situación actual y evolución de la grafiosis del olmo, Ophíostoma novo-u/mí, en la Alhambra y el Generalife (Granada, 1997). Ecología,12, 307–318.

  27. Gordo, O., & Sanz, J. J. (2010). Impact of climate change on plant phenology in Mediterranean ecosystems. Global Change Biology,16(3), 1082–1106.

  28. Heap, M. J., Culham, A., Lenoir, J., & Gavilán, R. G. (2014). Can the Iberian floristic diversity withstand near-future climate change? Open Journal of Ecology,4(17), 1089–1101.

  29. Hirst, J. M. (1952). An automatic volumetric spore trap. Annals of Applied Biology, 39(2), 257–265.

  30. IPCC. (2014). Climate change 2014: Impacts, adaptation, and vulnerability. Fifth assessment report. Retrieved Feb 2015 from https://www.ipcc.ch/report/ar5/syr/acesed.

  31. Levetin, E., & Van de Water, P. (2008). Changing pollen types/concentrations/distribution in the United States: Fact or fiction? Current Allergy and Asthma Reports,8(5), 418–424.

  32. Lorenzoni-Chiesura, F., Giorato, M., & Marcer, G. (2000). Allergy to pollen of urban cultivated plants. Aerobiologia,16(2), 313–316.

  33. Martínez-Bracero, M., Alcázar, P., de la Guardia, C., González-Minero, F. J., Ruiz, L., Pérez, M. T., et al. (2015). Pollen calendars: A guide to common airborne pollen in Andalusia. Aerobiologia,31(4), 549–557.

  34. Mercuri, A. M., Torri, P., Casini, E., & Olmi, L. (2013). Climate warming and the decline of Taxus airborne pollen in urban pollen rain (Emilia Romagna, northern Italy). Plant Biology,15, 70–82.

  35. Mercuri, A., Torri, P., Fornaciari, R., & Florenzano, A. (2016). Plant responses to climate change: The case study of Betulaceae and Poaceae pollen seasons (Northern Italy, Vignola, Emilia-Romagna). Plants,5(4), 42.

  36. Mesa, J. A. S., Smith, M., Emberlin, J., Allitt, U., Caulton, E., & Galan, C. (2003). Characteristics of grass pollen seasons in areas of southern Spain and the United Kingdom. Aerobiologia,19(3–4), 243–250.

  37. Mutke, S., Gordo, J., Climent, J., & Gil, L. (2003). Shoot growth and phenology modelling of grafted Stone pine (Pinus pinea L.) in Inner Spain. Annals of Forest Science,60(6), 527–537.

  38. Oteros, J., García-Mozo, H., Hervás, C., & Galán, C. (2013). Biometeorological and autoregressive indices for predicting olive pollen intensity. International Journal of Biometeorology,57(2), 307–316.

  39. Peñuelas, J., Filella, I., Zhang, X., Llorens, L., Ogaya, R., Lloret, F., et al. (2004). Complex spatiotemporal phenological shifts as a response to rainfall changes. New Phytologist,161(3), 837–846.

  40. Perry, T. O. (1971). Dormancy of trees in winter. Science,171(3966), 29–36.

  41. Priego, E., Jones, J., Porres, M. J., & Seco, A. (2017). Monitoring water vapour with GNSS during a heavy rainfall event in the Spanish Mediterranean area. Geomatics, Natural Hazards and Risk,8(2), 282–294.

  42. Recio, M., Picornell, A., Trigo, M. M., Gharbi, D., García-Sánchez, J., & Cabezudo, B. (2018). Intensity and temporality of airborne Quercus pollen in the southwest Mediterranean area: Correlation with meteorological and phenoclimatic variables, trends and possible adaptation to climate change. Agricultural and Forest Meteorology,250–251, 308–318.

  43. Rodríguez-Solà, R., Casas-Castillo, M. C., Navarro, X., & Redaño, Á. (2017). A study of the scaling properties of rainfall in Spain and its appropriateness to generate intensity-duration-frequency curves from daily records. International Journal of Climatology,37(2), 770–780.

  44. Rogers, C. A., Wayne, P. M., Macklin, E. A., Muilenberg, M. L., Wagner, C. J., Epstein, P. R., et al. (2006). Interaction of the onset of spring and elevated atmospheric CO2 on ragweed (Ambrosia artemisiifolia L.) pollen production. Environmental Health Perspectives,114(6), 865.

  45. Tormo-Molina, R., Gonzalo-Garijo, M. A., Silva-Palacios, I., & Muñoz-Rodríguez, A. F. (2010). 5 General Trends in Airborne Pollen Production and Pollination Periods at a Mediterranean Site (Badajoz, Southwest Spain). Journal of Investigational Allergology & Clinical Immunology,20(7), 567.

  46. Trigo, M. M., Jato, V., Fernández, D., & Galán, C. (2008). Atlas aeropalinológico de España (p. 111). Espana: Universidad de Leon.

  47. Velasco-Jiménez, M. J., Alcázar, P., Valenzuela, L. R., Gharbi, D., Díaz de la Guardia, C., & Galán, C. (2018). Pinus pollen season trend in South Spain. Plant Biosystems,152, 657–665.

  48. Velasco-Jiménez, M. J., Alcázar, P., Domínguez-Vilches, E., & Galán, C. (2013). Comparative study of airborne pollen counts located in different areas of the city of Córdoba (south-western Spain). Aerobiologia,29(1), 113–120.

  49. Velasco-Jiménez, M. J., Alcázar, P., Valle, A., Trigo, M. M., Minero, F., Domínguez-Vilches, E., et al. (2014). Aerobiological and ecological study of the potentially allergenic ornamental plants in south Spain. Aerobiologia,30(1), 91–101.

  50. Walther, G. R. (2010). Community and ecosystem responses to recent climate change. Philosophical Transactions of the Royal Society B: Biological Sciences,365(1549), 2019–2024.

  51. Ziello, C., Sparks, T. H., Estrella, N., Belmonte, J., Bergmann, K. C., Bucher, E., et al. (2012). Changes to airborne pollen counts across Europe. PLoS ONE,7(4), e3407.

Download references

Acknowledgements

This study was supported by the project “CGL2014-54731-R-FENOMED-Estudio de tendencias fenológicas en plantas del Mediterráneo Occidental y su relación con el cambio climático,” Ministerio de Economía y Competitividad, Spain Government.

Author information

Correspondence to María José Velasco-Jiménez.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Velasco-Jiménez, M.J., Alcázar, P., Díaz de la Guardia, C. et al. Pollen season trends in winter flowering trees in South Spain. Aerobiologia (2020). https://doi.org/10.1007/s10453-019-09622-x

Download citation

Keywords

  • Winter flowering trees
  • Pollen season
  • Climate effects
  • Meteorological factors
  • Aerobiology