pp 1–12 | Cite as

Extractable lipids from Phleum pratense pollen grains and their modifications by ozone exposure

  • Jinane Farah
  • Marie Choël
  • Patricia de Nadaï
  • Sylvie Gosselin
  • Denis Petitprez
  • Moomem Baroudi
  • Nicolas VisezEmail author
Original Paper


Grass pollen grains are an important source of aeroallergens eliciting respiratory allergic diseases worldwide. In the field of allergology, Phleum pratense pollen is considered as a model for other grass taxa. Upon contact with the aqueous phase of mucosa membranes, lipids are co-delivered from pollen grains with allergens. Lipid molecular species have pro-allergic, pro-inflammatory and immunomodulatory effects on the cells of the allergic immune response. The quantitative analysis of Phleum pratense pollen lipids is missing in the literature. In this work, the total mass of lipids extractable by methylene chloride was determined to be 22 ± 1 µg per mg of Phleum pratense pollen. Eighteen percent of the lipidic mass was quantified and identified by gas chromatographic analysis. Identified lipids included alkanes, alkenes, saturated and unsaturated fatty acids, aldehydes and alcohols. Pollen samples harvested at different times and locations showed a very similar lipidic pattern, both qualitatively and quantitatively. Laboratory ozone exposure of pollen substantially modified its lipidic composition by reactions of ozone with alkenes leading to the production of fatty acids and aldehydes. A deeper knowledge of the lipids released by pollen grains, including pollen from polluted areas, is essential for a better understanding of the chemical environment at the cellular level where allergic reactions take place.


Pollen Allergy Lipidomics Timothy grass Air pollution 



NV thanks the University of Lille and the Institut de Recherches Pluridisciplinaires en Sciences de l’Environnement (IRePSE Fed 4129) for financial support. The CaPPA project (Chemical and Physical Properties of the Atmosphere) is funded by the French National Research Agency (ANR) through the PIA (Programme d'Investissement d'Avenir) under contract ANR-11-LABX-005-01. This work is a contribution to the CPER research project CLIMIBIO. The authors thank the French Ministère de l'Enseignement Supérieur et de la Recherche, the Hauts de France Region and the European Funds for Regional Economic Development for their financial support to this work.


  1. Albertine, J. M., Manning, W. J., DaCosta, M., Stinson, K. A., Muilenberg, M. L., & Rogers, C. A. (2014). Projected carbon dioxide to increase grass pollen and allergen exposure despite higher ozone levels. PLoS ONE,9(11), e111712.CrossRefGoogle Scholar
  2. Andersson, K., & Lidholm, J. (2003). Characteristics and immunobiology of grass pollen allergens. International Archives of Allergy and Immunology,130(2), 87–107.CrossRefGoogle Scholar
  3. Bashir, M. E. H., Lui, J. H., Palnivelu, R., Naclerio, R. M., & Preuss, D. (2013a). Pollen lipidomics: lipid profiling exposes a notable diversity in 22 allergenic pollen and potential biomarkers of the allergic immune response. PLoS ONE,8(2), e57566.CrossRefGoogle Scholar
  4. Bashir, M. E. H., Ward, J. M., Cummings, M., Karrar, E. E., Root, M., Mohamed, A. B. A., et al. (2013b). Dual function of novel pollen coat (surface) proteins: IgE-binding capacity and proteolytic activity disrupting the airway epithelial Barrier. PLoS ONE,8(1), e53337.CrossRefGoogle Scholar
  5. Behrendt, H., Tomczok, J., Sliwa-Tomczok, W., Kasche, A., Ebner von Eschenbach, C., Becker, W. M., & Ring, J. (1999). Timothy grass (Phleum pratense L.) pollen as allergen carriers and initiators of an allergic response. International Archives of Allergy and Immunology, 118(2–4), 414–418.Google Scholar
  6. Behrendt, H., Kasche, A., Ebner von Eschenbach, C., Risse, U., Huss-Marp, J., & Ring, J. (2001a). Secretion of proinflammatory eicosanoid-like substances precedes allergen release from pollen grains in the initiation of allergic sensitization. International Archives of Allergy and Immunology,124(1–3), 121–125.CrossRefGoogle Scholar
  7. Behrendt, H., Kramer, U., Schafer, T., Kasche, A., Eberlein-Konig, B., Darsow, U., et al. (2001b). Allergotoxicology—A research concept to study the role of environmental pollutants in allergy. Allergy and Clinical Immunology International,13(3), 122–128.CrossRefGoogle Scholar
  8. Blume, C., Swindle, E. J., Gilles, S., Traidl-Hoffmann, C., & Davies, D. E. (2015). Low molecular weight components of pollen alter bronchial epithelial barrier functions. Tissue Barriers,3(3), e1062316. Scholar
  9. Buters., (2015). Variation of the group 5 grass pollen allergen content of airborne pollen in relation to geographic location and time in season. The Journal of Allergy and Clinical Immunology,136(1), 87–95.CrossRefGoogle Scholar
  10. Dahl, Å. E. (2018). Pollen lipids can play a role in allergic airway inflammation. Frontiers in Immunology,9, 2816. Scholar
  11. Evans, D. E., Sang, J. P., Cominos, X., Rothnie, N. E., & Knox, R. B. (1990). A study of phospholipids and galactolipids in pollen of two lines of Brassica napus L. (rapeseed) with different ratios of linoleic to linolenic acid. Plant Physiology, 93(2), 418–424.Google Scholar
  12. Evans, D. E., Taylor, P. E., Singh, M. B., & Knox, R. B. (1991). Quantitative analysis of lipids and protein from the pollen of Brassica napus L. Plant Science,73(1), 117–126.CrossRefGoogle Scholar
  13. Evans, D. E., Taylor, P. E., Singh, M. B., & Knox, R. B. (1992). The interrelationship between the accumulation of lipids, protein and the level of acyl carrier protein during the development of Brassica napus L. pollen. Planta, 186(3), 343–354.Google Scholar
  14. García-Mozo, H. (2017). Poaceae pollen as the leading aeroallergen worldwide: A review. Allergy,72(12), 1849–1858.CrossRefGoogle Scholar
  15. Gilles, S., Mariani, V., Bryce, M., Mueller, M. J., Ring, J., Jakob, T., et al. (2009a). Pollen-derived E1-phytoprostanes signal via PPAR- and NF-B-dependent mechanisms. The Journal of Immunology,182(11), 6653–6658.CrossRefGoogle Scholar
  16. Gilles, S., Mariani, V., Bryce, M., Mueller, M., Ring, J., Behrendt, H., et al. (2009b). Pollen allergens do not come alone: Pollen associated lipid mediators (PALMS) shift the human immune systems towards a TH2-dominated response. Allergy, Asthma & Clinical Immunology,5(1), 3.CrossRefGoogle Scholar
  17. González Roldán, N., Engel, R., Düpow, S., Jakob, K., Koops, F., Orinska, Z., et al. (2019). Lipid mediators from timothy grass pollen contribute to the effector phase of allergy and prime dendritic cells for glycolipid presentation. Frontiers in Immunology,10, 974.CrossRefGoogle Scholar
  18. Henricsson, S., Westerholm, R., Nilsson, S., & Berggren, B. (1996). Chemical characterisation of extractable compounds found in the coating of birch (Betula) Pollen. Grana,35(3), 179–184.CrossRefGoogle Scholar
  19. Hideux, M. (1971). Techniques d’étude du pollen au MEB: effets comparés des différents traitements physico-chimiques. Micron (1969), 3(1), 1–31.CrossRefGoogle Scholar
  20. Huss-Marp, J., Brockow, K., Darsow, U., Pfab, F., Kramer, U., Ring, J., et al. (2008). Exposure of grass pollen to volatile organic compounds enhances skin prick test reactivity. Journal of Investigational Allergology and Clinical Immunology,18(5), 408–409.Google Scholar
  21. Jochner, S., Lüpke, M., Laube, J., Weichenmeier, I., Pusch, G., Traidl-Hoffmann, C., et al. (2015). Seasonal variation of birch and grass pollen loads and allergen release at two sites in the German Alps. Atmospheric Environment,122, 83–93.CrossRefGoogle Scholar
  22. Karsten, S., Schäfer, G., & Schauder, P. (1994). Cytokine production and DNA synthesis by Human peripheral Lymphocytes in response to Palmitic, Stearic, Oleic, and Linoleic acid. Journal of Cellular Physiology,161(1), 15–22.CrossRefGoogle Scholar
  23. Kim, Y.-M., Kim, J., Cheong, H.-K., Jeon, B.-H., & Ahn, K. (2018). Exposure to phthalates aggravates pulmonary function and airway inflammation in asthmatic children. PLoS ONE,13(12), e0208553.CrossRefGoogle Scholar
  24. Lernhardt, W. (1990). Fatty acid requirement of B lymphocytes activated in vitro. Biochemical and Biophysical Research Communications,166(2), 879–885.CrossRefGoogle Scholar
  25. Mueller, G. A., Thompson, P. M., DeRose, E. F., O’Connell, T. M., & London, R. E. (2016). A metabolomic, geographic, and seasonal analysis of the contribution of pollen-derived adenosine to allergic sensitization. Metabolomics,12(12), 187.CrossRefGoogle Scholar
  26. Murphy, D. J. (2006). The extracellular pollen coat in members of the Brassicaceae: Composition, biosynthesis, and functions in pollination. Protoplasma,228(1–3), 31–39.CrossRefGoogle Scholar
  27. Naas, O., Mendez, M., Quijada, M., Gosselin, S., Farah, J., Choukri, A., et al. (2016). Chemical modification of coating of Pinus halepensis pollen by ozone exposure. Environmental Pollution,214, 816–821.CrossRefGoogle Scholar
  28. Pacini, E., & Hesse, M. (2005). Pollenkitt—Its composition, forms and functions. Flora-Morphology, Distribution, Functional Ecology of Plants,200(5), 399–415.CrossRefGoogle Scholar
  29. Padilla, F., Soria, N., Oleas, A., Rueda, D., Manjunatha, B., Kundapur, R. R., et al. (2017). The effects of pesticides on morphology, viability, and germination of Blackberry (Rubus glaucus Benth.) and Tree tomato (Solanum betaceum Cav.) pollen grains. 3 Biotech, 7(3), 154.Google Scholar
  30. Piffanelli, P., Ross, J. H., & Murphy, D. J. (1997). Intra- and extracellular lipid composition and associated gene expression patterns during pollen development in Brassica napus. The Plant Journal: For Cell and Molecular Biology,11(3), 549–562.CrossRefGoogle Scholar
  31. Piffanelli, P., Ross, J. H. E., & Murphy, D. J. (1998). Biogenesis and function of the lipidic structures of pollen grains. Sexual Plant Reproduction,11(2), 65–80.CrossRefGoogle Scholar
  32. Plaza, M. P., Alcázar, P., Hernández-Ceballos, M. A., & Galán, C. (2016). Mismatch in aeroallergens and airborne grass pollen concentrations. Atmospheric Environment,144, 361–369.CrossRefGoogle Scholar
  33. Plötz, S. G., Traidl-Hoffmann, C., Feussner, I., Kasche, A., Feser, A., Ring, J., et al. (2004). Chemotaxis and activation of human peripheral blood eosinophils induced by pollen-associated lipid mediators. Journal of Allergy and Clinical Immunology,113(6), 1152–1160.CrossRefGoogle Scholar
  34. Quilichini, T. D., Grienenberger, E., & Douglas, C. J. (2015). The biosynthesis, composition and assembly of the outer pollen wall: A tough case to crack. Phytochemistry,113, 170–182.CrossRefGoogle Scholar
  35. Rogerieux, F., Godfrin, D., Sénéchal, H., Motta, A. C., Marlière, M., Peltre, G., et al. (2007). Modifications of Phleum pratense grass pollen allergens following artificial exposure to gaseous air pollutants (O3, NO2, SO2). International Archives of Allergy and Immunology,143(2), 127–134.CrossRefGoogle Scholar
  36. Scanlon, J. T., & Willis, D. E. (1985). Calculation of flame ionization detector relative response factors using the effective carbon number concept. Journal of Chromatographic Science,23(8), 333–340.CrossRefGoogle Scholar
  37. Shiraiwa, M., Selzle, K., & Pöschl, U. (2012). Hazardous components and health effects of atmospheric aerosol particles: reactive oxygen species, soot, polycyclic aromatic compounds and allergenic proteins. Free Radical Research,46(8), 927–939.CrossRefGoogle Scholar
  38. Smith, H. R., Larsen, G. L., Cherniack, R. M., Wenzel, S. E., Voelkel, N. F., Westcott, J. Y., et al. (1992). Inflammatory cells and eicosanoid mediators in subjects with late asthmatic responses and increases in airway responsiveness. Journal of Allergy and Clinical Immunology,89(6), 1076–1084.CrossRefGoogle Scholar
  39. Traidl-Hoffmann, C., Kasche, A., Jakob, T., Huger, M., Plötz, S., Feussner, I., et al. (2002). Lipid mediators from pollen act as chemoattractants and activators of polymorphonuclear granulocytes. Journal of Allergy and Clinical Immunology,109(5), 831–838.CrossRefGoogle Scholar
  40. Vrtala, S., Grote, M., Duchene, M., Vanree, R., Kraft, D., Scheiner, O., et al. (1993). Properties of tree and grass pollen allergens: Reinvestigation of the linkage between solubility and allergenicity. International Archives of Allergy and Immunology,102(2), 160–169.CrossRefGoogle Scholar
  41. Wang, Q., Nakamura, S., Lu, S., Xiu, G., Nakajima, D., Suzuki, M., et al. (2012). Release behavior of small sized daughter allergens from Cryptomeria japonica pollen grains during urban rainfall event. Aerobiologia,28(1), 71–81.CrossRefGoogle Scholar
  42. White, J. F., & Bernstein, D. I. (2003). Key pollen allergens in North America. Annals of Allergy, Asthma & Immunology,91(5), 425–435.CrossRefGoogle Scholar
  43. Zhu, C., Farah, J., Choël, M., Gosselin, S., Baroudi, M., Petitprez, D., et al. (2018). Uptake of ozone and modification of lipids in Betula Pendula pollen. Environmental Pollution,242, 880–886.CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Univ. Lille, CNRS, UMR 8522 - PC2A - Physicochimie des Processus de Combustion et de l’AtmosphèreLilleFrance
  2. 2.Faculty of Public Health (FSP III), Water & Environment Science LaboratoryLebanese UniversityTripoliLebanon
  3. 3.Univ. Lille, CNRS, UMR 8516 - LASIR - Laboratoire de Spectrochimie Infrarouge et RamanLilleFrance
  4. 4.Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Center for Infection and Immunity of LilleLilleFrance
  5. 5.Association Pour La Prévention de La Pollution AtmosphériqueLoosFrance

Personalised recommendations