Advertisement

Aerobiologia

, Volume 35, Issue 4, pp 647–657 | Cite as

Effect of the Mediterranean crops in the airborne pollen spectrum

  • Moisés Martínez-BraceroEmail author
  • Purificación Alcázar
  • María José Velasco-Jiménez
  • Carmen Galán
Original Paper
  • 68 Downloads

Abstract

The impact of pollen grains as an allergenic factor is an important object of study. Various statistical analyses have been used to describe the behaviour of anemophilous plants, including certain Mediterranean cultivars (Olea europaea, Vitis vinifera, etc.). The main aims of this study are to define the pollen spectrum within an agricultural area and the effects of meteorological parameters and to examine whether Spearman’s correlation and ReDundancy Analysis (RDA) provide similar information. Aerobiological sampling was conducted using a Hirst-type volumetric spore trap from January 2015 to August 2018 in the Montilla mountains, in the south of the province of Córdoba, in an agricultural area close to a small city. In this location, the effect of ornamental plants is reduced and the cultivar effect becomes more important. Taking into account the average percentage for all years, the most abundant pollen types were Olea, Quercus, Poaceae, Urticaceae, Urtica membranacea, Vitis, Plantago, Pinus and Amaranthaceae. Due to the climatic characteristics of the study area, the meteorological parameters with most influence were temperature and dew point. The pollen spectrum in the study zone is caused by the agricultural use of the land, increasing the concentrations of some allergenic pollen types and decreasing the diversity of airborne pollen types. The RDA analysis gives a better explanation of the complex relationship between meteorological parameters and airborne pollen release and dispersion compared with the Spearman’s correlation.

Keywords

Pollen Agriculture Olea europaea Vitis vinifera RDA 

References

  1. Alcázar, P., Galán, C., Cariñanos, P., & Domínguez-Vilches, E. (1999). Diurnal variation of airborne pollen at two different heights. Journal of Investigational Allergology and Clinical Immunology,9, 89–95.Google Scholar
  2. Bossard M, Feranec J, Otahel J (2000) CORINE land cover technical guide: Addendum 2000.Google Scholar
  3. Braak, C. J. F. T. (1986). Canonical correspondence analysis: A new eigenvector technique for multivariate direct gradient analysis. Ecology,67, 1167–1179.  https://doi.org/10.2307/1938672.CrossRefGoogle Scholar
  4. Cariñanos, P., Alcázar, P., Galán, C., & Domínguez, E. (2014). Environmental behaviour of airborne Amaranthaceae pollen in the southern part of the Iberian Peninsula, and its role in future climate scenarios. Science of the Total Environment,470, 480–487.CrossRefGoogle Scholar
  5. Cariñanos, P., & Casares-Porcel, M. (2011). Urban green zones and related pollen allergy: A review. Some guidelines for designing spaces with low allergy impact. Landscape and Urban Planning,101, 205–214.CrossRefGoogle Scholar
  6. Cariñanos, P., Galán, C., Alcázar, P., & Domínguez, E. (2000). Aerobiología en Andalucía: estación de Córdoba (1999). Rea,6, 19–22.Google Scholar
  7. Cebrino, J., Galán, C., & Domínguez-Vilches, E. (2016). Aerobiological and phenological study of the main Poaceae species in Córdoba City (Spain) and the surrounding hills. Aerobiologia,32, 595–606.CrossRefGoogle Scholar
  8. D’Amato, G., Cecchi, L., Bonini, S., et al. (2007). Allergenic pollen and pollen allergy in Europe. Allergy,62, 976–990.CrossRefGoogle Scholar
  9. Fernández-González, M., Rodríguez-Rajo, F. J., Escuredo, O., & Aira, M. J. (2013). Influence of thermal requirement in the aerobiological and phenological behavior of two grapevine varieties. Aerobiologia,29, 523–535.  https://doi.org/10.1007/s10453-013-9302-6.CrossRefGoogle Scholar
  10. Fernández-Rodríguez, S., Durán-Barroso, P., Silva-Palacios, I., et al. (2018). Environmental assessment of allergenic risk provoked by airborne grass pollen through forecast model in a Mediterranean region. Journal of Cleaner Production,176, 1304–1315.CrossRefGoogle Scholar
  11. Galán, C., Alcázar, P., Cariñanos, P., et al. (2000). Meteorological factors affecting daily Urticaceae pollen counts in southwest Spain. International Journal of Biometeorology,43, 191–195.CrossRefGoogle Scholar
  12. Galán C, González PC, Teno PA, Vilches ED (2007) Spanish Aerobiology Network (REA): Management and quality manual.Google Scholar
  13. Galán, C., Smith, M., Thibaudon, M., et al. (2014). Pollen monitoring: Minimum requirements and reproducibility of analysis. Aerobiologia,30, 385–395.  https://doi.org/10.1007/s10453-014-9335-5.CrossRefGoogle Scholar
  14. Galán, C., Tormo, R., Cuevas, J., et al. (1991). Theoretical daily variation patterns of airborne pollen in the southwest of Spain. Grana,30, 201–209.CrossRefGoogle Scholar
  15. Galera, M., Elvira-Rendueles, B., Moreno, J., et al. (2018). Analysis of airborne Olea pollen in Cartagena (Spain). Science of the Total Environment,622, 436–445.CrossRefGoogle Scholar
  16. Garcia-Mozo, H., Dominguez-Vilches, E., & Galan, C. (2007). Airborne allergenic pollen in natural areas: Hornachuelos Natural Park, Cordoba, southern Spain. Annals of Agricultural and Environmental Medicine,14, 63.Google Scholar
  17. Grinn-Gofroń, A., Bosiacka, B., Bednarz, A., & Wolski, T. (2018). A comparative study of hourly and daily relationships between selected meteorological parameters and airborne fungal spore composition. Aerobiologia,34, 45–54.CrossRefGoogle Scholar
  18. Hirst, J. M. (1952). An Automatic Volumetric Spore Trap. Annals of Applied Biology,39, 257–265.  https://doi.org/10.1111/j.1744-7348.1952.tb00904.x.CrossRefGoogle Scholar
  19. Kruczek, A., Puc, M., & Wolski, T. (2017). Airborne pollen from allergenic herbaceous plants in urban and rural areas of Western Pomerania, NW Poland. Grana,56, 71–80.CrossRefGoogle Scholar
  20. Li, Y., Ge, Y., Xu, Q., et al. (2015). Airborne pollen assemblages and weather regime in the central-eastern Loess Plateau, China. Atmospheric Environment,106, 92–99.CrossRefGoogle Scholar
  21. Majeed, H. T., Periago, C., Alarcón, M., & Belmonte, J. (2018). Airborne pollen parameters and their relationship with meteorological variables in NE Iberian Peninsula. Aerobiologia,34, 375–388.CrossRefGoogle Scholar
  22. Martínez-Bracero, M., Alcázar, P., de la Guardia, C. D., et al. (2015). Pollen calendars: A guide to common airborne pollen in Andalusia. Aerobiologia,31, 549–557.  https://doi.org/10.1007/s10453-015-9385-3.CrossRefGoogle Scholar
  23. Martínez-Bracero, M., Alcázar, P., Velasco-Jiménez, M. J., et al. (2018). Phenological and aerobiological study of vineyards in the Montilla-Moriles PDO area, Cordoba, southern Spain. The Journal of Agricultural Science.  https://doi.org/10.1017/S0021859618000783.CrossRefGoogle Scholar
  24. Maya-Manzano, J. M., Fernández-Rodríguez, S., Smith, M., et al. (2016). Airborne Quercus pollen in SW Spain: Identifying favourable conditions for atmospheric transport and potential source areas. Science of the Total Environment,571, 1037–1047.CrossRefGoogle Scholar
  25. Maya-Manzano, J., Sadyś, M., Tormo-Molina, R., et al. (2017). Relationships between airborne pollen grains, wind direction and land cover using GIS and circular statistics. Science of the Total Environment,584, 603–613.CrossRefGoogle Scholar
  26. Oduber, F., Calvo, A., Blanco-Alegre, C., et al. (2019). Links between recent trends in airborne pollen concentration, meteorological parameters and air pollutants. Agricultural and Forest Meteorology,264, 16–26.CrossRefGoogle Scholar
  27. Oksanen J, Blanchet FG, Friendly M, et al (2019) Package ‘vegan’.Google Scholar
  28. Oteros, J., García-Mozo, H., Alcázar, P., et al. (2015). A new method for determining the sources of airborne particles. Journal of Environmental Management,155, 212–218.CrossRefGoogle Scholar
  29. Qin, F., Wang, Y.-F., Ferguson, D. K., et al. (2015). Utility of surface pollen assemblages to delimit eastern Eurasian steppe types. PLoS ONE,10, e0119412.CrossRefGoogle Scholar
  30. R Development Core Team (2008) R: A language and environment for statistical computing. R Foundation for Statistical Computing. http://www.r-project.org/.
  31. Recio, M., Picornell, A., Trigo, M., et al. (2018). Intensity and temporality of airborne Quercus pollen in the southwest Mediterranean area: Correlation with meteorological and phenoclimatic variables, trends and possible adaptation to climate change. Agricultural and Forest Meteorology,250, 308–318.CrossRefGoogle Scholar
  32. Ribeiro, H., Abreu, I., & Cunha, M. (2017). Olive crop-yield forecasting based on airborne pollen in a region where the olive groves acreage and crop system changed drastically. Aerobiologia,33, 473–480.CrossRefGoogle Scholar
  33. Ribeiro, H., Cunha, M., & Abreu, I. (2003). Airborne pollen concentration in the region of Braga, Portugal, and its relationship with meteorological parameters. Aerobiologia,19, 21–27.CrossRefGoogle Scholar
  34. Rojo, J., Rapp, A., Lara, B., et al. (2016). Characterisation of the airborne pollen spectrum in Guadalajara (central Spain) and estimation of the potential allergy risk. Environmental Monitoring and Assessment,188, 130.CrossRefGoogle Scholar
  35. Sadyś, M., Strzelczak, A., Grinn-Gofroń, A., & Kennedy, R. (2015). Application of redundancy analysis for aerobiological data. International Journal of Biometeorology,59, 25–36.  https://doi.org/10.1007/s00484-014-0818-4.CrossRefGoogle Scholar
  36. Tassan-Mazzocco, F., Felluga, A., & Verardo, P. (2015). Prediction of wind-carried Gramineae and Urticaceae pollen occurrence in the Friuli Venezia Giulia region (Italy). Aerobiologia,31, 559–574.CrossRefGoogle Scholar
  37. Vázquez, L., Galán, C., & Domínguez-Vilches, E. (2003). Influence of meteorological parameters on olea pollen concentrations in Córdoba (South-western Spain). International Journal of Biometeorology,48, 83–90.CrossRefGoogle Scholar
  38. Vega-Maray, A. M., Valencia-Barrera, R. M., Fernandez-Gonzalez, D., & Fraile, R. (2003). Urticaceae pollen concentration in the atmosphere of north-western spain. Annals of Agricultural and Environmental Medicine,10, 249–256.Google Scholar
  39. Velasco-Jiménez, M., Alcázar, P., Domínguez-Vilches, E., & Galán, C. (2013). Comparative study of airborne pollen counts located in different areas of the city of Córdoba (south-western Spain). Aerobiologia,29, 113–120.CrossRefGoogle Scholar
  40. Velasco-Jiménez, M. J., Alcázar, P., Valenzuela, L. R., et al. (2017). Pinus pollen season trend in South Spain. Plant Biosystems - An International Journal Dealing with all Aspects of Plant Biology.  https://doi.org/10.1080/11263504.2017.1311962.CrossRefGoogle Scholar
  41. Velasco-Jiménez, M., Alcázar, P., Valle, A., et al. (2014). Aerobiological and ecological study of the potentially allergenic ornamental plants in south Spain. Aerobiologia,30, 91–101.CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Botany, Ecology and Plant PhysiologyUniversity of CórdobaCórdobaSpain

Personalised recommendations