pp 1–14 | Cite as

First fungal spore calendar for the atmosphere of Bratislava, Slovakia

  • Jana ŠčevkováEmail author
  • Jozef Kováč
Original Paper


Fungal spores were identified and quantified in the air of Bratislava during the 1-year period (2016) using a Burkard 7-day volumetric aerospore trap. Based on data obtained, the first spore calendar in Slovakia has been constructed for the urban area of Bratislava. The total annual spore concentration recorded during this period was 836,418 spores/m3, belonging to 53 fungal spore types. The fungal taxa contributing the highest concentration of spores were Cladosporium (71.88% of the total), Coprinus (8.84%), Leptosphaeria (3.88%), Ganoderma (3.43%) and Alternaria (2.79%). Remaining 48 spore types were less well represented (altogether 9.18% of the total). Daily monitoring data revealed a large variation in airborne spore concentrations. Fungal spores peaked during summer and autumn months (June–October) and declined from November to March. The maximum monthly total spore concentration (153,342 spores/m3) was recorded in July, while the minimum (1381 spores/m3) in January. The relationships between mean daily airborne spore concentrations of selected fungal taxa and meteorological variables were evaluated through multiple regression analysis. The percentage of variation explained by regression analyses was 49.7% for Alternaria, 46.9% for Ganoderma, 45.8% for Cladosporium, 43.9% for Leptosphaeria and 32.1% for Coprinus. Spore concentrations of most analysed airborne fungal taxa were positively associated with air temperature and/or negatively associated with relative air humidity either throughout the year or only in summer. Cladosporium spore concentration was positively related with the wind speed, whereas the association between Ganoderma spore concentration and wind speed was negative. Spores of Leptosphaeria showed significant positive association with relative air humidity and significant negative association with sunshine duration in summer. Knowledge of seasonal patterns of the type and number of spores in the air will provide clinicians and sufferers of allergic asthma and rhinitis as well as agronomists with valuable information on the prophylaxis of respiratory allergic and plant diseases, respectively.


Airborne spores Spore calendar Air monitoring Meteorological parameters 



This study was supported by the Grant Agency VEGA (Bratislava), Grant Nos. 1/0885/16 and 2/0054/18.


  1. Aira, M. J., Rodríguez-Rajo, F. J., & Jato, V. (2008). 47 annual records of allergenic fungi spore: Predictive models from the NW Iberian Peninsula. Annals of Agricultural and Environmental Medicine, 15, 91–98.Google Scholar
  2. Almaguer, M., Aira, M. J., Rodríguez-Rajo, F. J., Fernandez-Gonzalez, M., & Rojas-Flores, T. I. (2015). Thirty-four identifiable airborne fungal spores in Havana, Cuba. Annals of Agricultural and Environmental Medicine, 22, 215–220.CrossRefGoogle Scholar
  3. Almaguer-Chávez, M., Aira, M. J., Rojas, T. I., Fernández-González, M., & Rodríguez-Rajo, F. J. (2018). New findings of airborne fungal spores in the atmosphere of Havana, Cuba, using aerobiological non-viable methodology. Annals of Agricultural and Environmental Medicine, 25, 349–359.CrossRefGoogle Scholar
  4. Arora, A., & Jain, V. K. (2008). A colour atlas of aeroallergens (pollen and fungal spores). India: Madhu Publications.Google Scholar
  5. Artaç, H., Kizilpinar Temizer, I., Özdemir, H., Pekcan, S., Doğan, C., & Reisli, I. (2014). Alternaria and Cladosporium spores in the atmosphere of Konya and their relationship with meteorological factors. Asthma Allergy Immunology, 12, 130–139.Google Scholar
  6. Bednarz, A., & Pawłowska, S. (2016). A fungal spore calendar for the atmosphere of Szczecin, Poland. Acta Agrobotanica, 69, 1669.CrossRefGoogle Scholar
  7. British Aerobiology Federation. (1995). Airborne pollen and spores: A guide to trapping and counting. Rotherham: National Pollen and Hay fever Bureau.Google Scholar
  8. Bush, R. K., & Portnoy, J. M. (2001). The role and abatement of fungal allergens in allergic diseases. Journal of Allergy and Clinical Immunology, 107, 430–440.CrossRefGoogle Scholar
  9. Calderón, M. C., Lacey, J., McCartney, H. A., & Rosas, I. (1995). Seasonal and diurnal variation of airborne basidiomycete spore concentrations in Mexico City. Grana, 34, 260–268.CrossRefGoogle Scholar
  10. Caretta, G. (1992). Epidemiology of allergic disease: The fungi. Aerobiologia, 8, 439–445.CrossRefGoogle Scholar
  11. Celenk, S., Bicakci, A., Erkan, P., & Aybeke, M. (2007). Cladosporium Link ex Fr. and Alternaria Nees ex Fr. Spores in the atmosphere of Edirne. Journal of Biological and Environmental Sciences, 1, 127–130.Google Scholar
  12. Chrenová, J., Mišík, M., Ščevková, J., Mičieta, K., & Mlynarčík, D. (2004). Monitoring of microscopic airborne fungi in Bratislava. Acta Facult Pharm Comenianae, 51, 68–72.Google Scholar
  13. Corden, J. M., & Millington, J. J. (2001). The long-term trends and seasonal variation of the aeroallergen Alternaria in Derby, UK. Aerobiologia, 17, 127–136.CrossRefGoogle Scholar
  14. Costos-Yáñez, T. R., Rodríguez-Rajo, F. J., Pérez-González, A., Aira, M. J., & Jato, V. (2013). Quality control in aerobiology: Comparison different slide reading methods. Aerobiologia, 29, 1–11.CrossRefGoogle Scholar
  15. DʼAmato, G., & Spieksma, F. T. M. (1995). Aerobiologic and clinical aspects of mould allergy in Europe. Allergy, 50, 870–877.CrossRefGoogle Scholar
  16. Díez Herrero, A., Sabariego Ruiz, S., Gutiérrez Bustillo, M., & Cervigón Morales, P. (2006). Study of airborne fungal spores in Madrid, Spain. Aerobiologia, 22, 135–142.Google Scholar
  17. Dixit, A., Lewis, W., Baty, J., Crozier, W., & Wedner, J. (2000). Deuteromycete aerobiology and skin-reactivity patterns-A two year concurrent study in Corpus Christi, Texas, USA. Grana, 39, 209–218.CrossRefGoogle Scholar
  18. Dušička, J., Ščevková, J., Mičieta, K., Brutovská, E., Sámelová, A., Zámečníková, M., et al. (2012). Pollen concentration in the air of Bratislava (Slovakia): A comparison study from the two pollen monitoring stations. Acta Botanica Universitatis Comenianae, 47, 39–49.Google Scholar
  19. García-Fernández, I., Polo-López, M. I., Oller, I., & Fernández-Ibáñez, P. (2012). Bacteria and fungi inactivation using Fe3+/sunlight, H2O2/sunlight and near neutral photo-Fenton: A comparative study. Applied Catalysis, B: Environmental, 121–122, 20–29.CrossRefGoogle Scholar
  20. Gioulekas, D., Damialis, A., Papakosta, D., Spieksma, F., Giouleka, P., & Patakas, D. (2004). Allergenic fungi spore records (15 years) and sensitization in patients with respiratory allergy in Thessaloniki-Greece. Journal of Investigational Allergology and Clinical Immunology, 14, 225–231.Google Scholar
  21. Grant Smith, E. (2000). Sampling and identifying allergenic pollens and moulds. San Antonio, TX: Blewstone Press.Google Scholar
  22. Green, B. J. (2018). Emerging insights into the occupational mycobiome. Current Allergy and Asthma Reports, 18, 62.CrossRefGoogle Scholar
  23. Grinn-Gofroń, A., Bosiacka, B., Bednarz, A., & Wolski, T. (2018). A comparative study of hourly and daily relationships between selected meteorological parameters and airborne fungal spore composition. Aerobiologia, 34, 45–54.CrossRefGoogle Scholar
  24. Grinn-Gofroń, A., & Strzelczak, A. (2008). Artificial neural network models of relationships between Alternaria spores and meteorological factor in Szczecin (Poland). International Journal of Biometeorology, 52, 859–868.CrossRefGoogle Scholar
  25. Grinn-Gofroń, A., & Strzelczak, A. (2009). Hourly predictive artificial neural network and multivariate regression tree models of Alternaria and Cladosporium spore concentrations in Szczecin (Poland). International Journal of Biometeorology, 53, 555–562.CrossRefGoogle Scholar
  26. Hasnain, S. M., Akhter, T., & Waqar, M. A. (2012). Airborne and allergenic fungal spores of the Karachi environment and their correlation with meteorological factors. Journal of Environmental Monitoring, 14, 1006–1013.CrossRefGoogle Scholar
  27. Hrnčiarová, T., Izakovičová, Z., Pauditšová, E., Krnáčová, Z., Štefunková, D., & Dobrovodská, M. (2006). Krajinoekologické pomery rozvoja Bratislavy. The conditions of the landscape-ecological development of Bratislava. Veda Bratislava (p. 315).Google Scholar
  28. Hrvoľ, J. (2014). Extrémne teploty vzduchu na stanici Bratislava, Mlynská dolina za obdobie 1983–2012. Extreme air temperature at station Bratislava, Mlynská dolina for the period 1983–2012. In: Čelková, A. (Ed.). 21st international poster day transport of water, chemicals and energy in the soil-plant-atmosphere system, Bratislava (pp. 93–101).Google Scholar
  29. Ianovici, N. (2016). Atmospheric concentrations of selected allergenic fungal spores in relation to some meteorological factors, in Timişoara (Romania). Aerobiologia, 32, 139–156.CrossRefGoogle Scholar
  30. Ianovici, N., & Tudorica, D. (2009). Aeromycoflora in outdoor environment of Timisoara city (Romania). Notulae Scientia Biologicae, 1, 21–28.CrossRefGoogle Scholar
  31. Ibáñez Henríquez, V., Rojas Villegas, G., & Roure Nolla, J. M. (2001). Airborne fungi monitoring in Santiago, Chile. Aerobiologia, 17, 137–142.CrossRefGoogle Scholar
  32. Kallawicha, K., Chen, Y-Ch., Chao, H. J., Shen, W-Ch., Chen, B.-Y., Chuang, Y-Ch., et al. (2017). Ambient fungal spore concentration in subtropical metropolis: Temporal distributions and meteorological determinants. Aerosol and Air Quality Research, 17, 2051–2063.CrossRefGoogle Scholar
  33. Kasprzyk, I. (2008). Aeromycology. Main research fields of interest during the last 25 years. Annals of Agricultural and Environmental Medicine, 15, 1–7.Google Scholar
  34. Kasprzyk, I., Rzepowska, B., & Wasylów, M. (2004). Fungal spores in the atmosphere of Rzeszów (south-east Poland). Annals of Agricultural and Environmental Medicine, 11, 285–289.Google Scholar
  35. Kasprzyk, I., & Worek, M. (2006). Airborne fungal spores in urban and rural environments in Poland. Aerobiologia, 22, 169–176.CrossRefGoogle Scholar
  36. Lacey, J. (1981). Aerobiology of conidial fungi. In G. T. Cole & B. Kendrick (Eds.), Biology of conidial fungi (Vol. I, pp. 273–416). New York: Academic Press.Google Scholar
  37. Lacey, M. E., & West, J. S. (2006). The air spora. The manual for catching and identifying airborne biological particles. Dordrecht: Springer.Google Scholar
  38. Magyar, D., Frenguelli, G., Bricchi, E., Tedeschini, E., Csontos, P., Li, D. W., et al. (2009). The biodiversity of air spora in an Italian vineyard. Aerobiologia, 25, 99–109.CrossRefGoogle Scholar
  39. Mandrioli, P. (1998). Introduction to biological particles. In P. Mandrioli, P. Comtois, & V. Levizzani (Eds.), Methods in aerobiology (pp. 1–12). Bologna: Pitagora Editrice.Google Scholar
  40. Martínez Blanco, X., Tejera, L., & Beri, Á. (2016). First volumetric record of fungal spores in the atmosphere of Montevideo City, Uruguay: A 2-year survey. Aerobiologia, 32, 317–333.CrossRefGoogle Scholar
  41. Mitakakis, T. Z., & Guest, D. I. (2001). A fungal spore calendar for the atmosphere of Melbourne, Australia, for the year 1993. Aerobiologia, 17, 171–176.CrossRefGoogle Scholar
  42. Moreno-Sarmiento, M., Peňalba, M. C., Belmonte, J., Rosas-Pérez, I., Lizarraga-Celaya, C., Ortega-Nieblas, M. M., et al. (2016). Airborne fungal spores from an urban locality in southern Sonora, Mexico. Revista Mexicana de Micología, 44, 11–20.Google Scholar
  43. Myszkowska, D., Stępalska, D., Obtułowicz, K., & Porębski, G. (2004). The relationship between airborne pollen and fungal spore concentrations and seasonal pollen allergy symptoms in Kraków in 1997–1999. Aerobiologia, 18, 153–161.CrossRefGoogle Scholar
  44. Nilsson, S., Käärik, A., Keller, J., Kiffer, E., Perreau, J., & Reisinger, O. (1983). Atlas of airborne fungal spores in Europe. Berlin: Springer.Google Scholar
  45. Nolard, N., Beguin, H., & Chausser, C. (2001). Mold allergy: 25 years of indoor and outdoor studies in Belgium. Allergy and Immunology, 33, 101–102.Google Scholar
  46. Oliveira, M., Ribeiro, H., & Abreu, I. (2005). Annual variation of fungal spores in atmosphere of Porto: 2003. Annals of Agricultural and Environmental Medicine, 12, 309–315.Google Scholar
  47. Oliveira, M., Ribeiro, H., Delgado, J. L., & Abreu, I. (2009). Seasonal and intradiurnal variation of allergenic fungal spores in urban and rural areas of the North of Portugal. Aerobiologia, 25, 85–98.CrossRefGoogle Scholar
  48. Peel, R. G., Kennedy, R., Smith, M., & Hertel, O. (2014). Relative efficiencies of the Burkard 7-Day, Rotorod and Burkard Personal samplers for Poaceae and Urticaceae pollen under field conditions. Annals of Agricultural and Environmental Medicine, 21, 745–752.CrossRefGoogle Scholar
  49. Sakiyan, N., & Inceoğlu, O. (2003). Atmospheric concentrations of Cladosporium Link and Alternaria Nees spores in Ankara and the effects of meteorological factors. Turk J Bot, 27, 77–81.Google Scholar
  50. Sánchez Reyes, E., de la Cruz, D. R., & Sánchez Sánchez, J. (2016). First fungal spore calendar of the middle-west of the Iberian Peninsula. Aerobiologia, 32, 529–539.CrossRefGoogle Scholar
  51. Ščevková, J., Dušička, J., Chrenová, J., & Mičieta, K. (2010). Annual pollen spectrum variations in the air of Bratislava (Slovakia): Years 2002–2009. Aerobiologia, 26, 277–287.CrossRefGoogle Scholar
  52. Ščevková, J., Dušička, J., Mičieta, K., & Somorčík, J. (2016). The effects of recent changes in air temperature on trends in airborne Alternaria, Epicoccum and Stemphylium spore seasons in Bratislava (Slovakia). Aerobiologia, 32, 69–81.CrossRefGoogle Scholar
  53. Shaheen, I. (1992). Aeromycology of Amman area, Jordania. Grana, 31, 223–228.CrossRefGoogle Scholar
  54. Sikoparija, B., Galán, C., Smith, M., & EAS QC Working Group. (2017). Pollen-monitoring: Between analyst proficiency testing. Aerobiologia, 33, 191–199.CrossRefGoogle Scholar
  55. Sousa, L., Câmara Camacho, I., Grinn-Gofroń, A., & Camacho, R. (2016). Monitoring of anamorphic fungal spores in Madeira region (Portugal), 2003–2008. Aerobiologia, 32, 303–315.CrossRefGoogle Scholar
  56. Spieksma, F. T. M. (1991). Regional European pollen calendars. In G. D’Amato, F. T. M. Spieksma, & S. Bonini (Eds.), Allergenic pollen and pollinosis in Europe (pp. 49–65). Oxford: Blackwell Scientific Publications.Google Scholar
  57. Stępalska, D., Grinn-Gofroń, A., & Piotrowicz, K. (2012). Occurrence of Didymella ascospores in western and southern Poland in 2004–2006. Aerobiologia, 28, 153–159.CrossRefGoogle Scholar
  58. Willeke, K., & Macher, J. M. (1999). Air sampling. In J. M. Macher (Ed.), Bioaerosols: Assessment and control (pp. 11.1–11.25). Cincinnati, OH: ACGIH.Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Botany, Faculty of Natural SciencesComenius UniversityBratislavaSlovakia
  2. 2.Department of Applied Mathematics and Statistics, Faculty of Mathematics, Physics and InformaticsComenius UniversityBratislavaSlovakia

Personalised recommendations