Advertisement

Aerobiologia

pp 1–18 | Cite as

Diversity of airborne mycofloral abundance and allergenic fungal spores of Enugu North, Nigeria

  • Reginald Chukwuemeka Njokuocha
  • Emmanuel Emeka Osayi
  • Clara Nchedochukwu Ikegbunam
Original Paper
  • 26 Downloads

Abstract

Airborne mycofloral spores are important part of the fungal inocula responsible for various infections, decays and allergies in the environment. Unfortunately, the diversity, abundance and rhythm of seasonal occurrence are poorly known and studied in this part of the tropics. The aims of this study were to ascertain the airborne fungal spore diversity and their monthly and seasonal abundance at the different locations. The influence of some meteorological factors on 18 most abundant and fungal spore genera was under studied. The study was conducted in Enugu North using modified Tauber Traps at locations differing in urbanization for a period of 12 months. The results showed that 49 airborne fungal spore genera were identified which varied in abundance across the seasons, months and locations. The highest airborne fungal spore abundance and diversity were recorded during the rainy season, and the majority of the airborne spore genera had their peak frequencies in October, July and March. The highest spore abundance was recorded in Adani, but majority of the spore diversity had their maximum frequency of occurrence at Enugu Ezike and Adani. High fungal spore diversity and abundance were recorded more in higher-altitude locations, especially the most frequent and abundant airborne fungal spore genera such as Nigrospora, Endophragmiella, Ustilago, Botryodiplodia, Pithomyces and Venturia. Statistically, there were significant differences (p < 0.05) in the abundance of airborne fungal spores at both the locations and months. Spearman’s correlation analysis showed that the abundance of spore genera of Cladosporium, Alternaria, Endophragmiella, Torula, Uromyces and Venturia had significant (p < 0.05) correlation relationship with meteorological factors.

Keywords

Airborne fungal diversity Meteorological factors Fungal spore abundance Enugu North 

References

  1. Acevedo, M., Steadman, J. R., & Rosa, J. C. (2013). Uromyces appendiculatus in Honduras: Pathogen diversity and resistance screening. Plant Disease, 97(5), 652–661.CrossRefGoogle Scholar
  2. Adhikari, A., Sen, M. M., Gupta-Bhattacharya, S., & Chanda, S. (2004). Volumetric assessment of airborne fungi in two sections of a rural indoor dairy cattle shed. Environment International, 29, 1071–1078.  https://doi.org/10.1016/S0160-4120(03)00103-X.CrossRefGoogle Scholar
  3. Agwu, C. O. C. (1997). Modern pollen rain in Nsukka: An indicator of the vegetation of Nsukka plateau. WurzBurger Geographische Arbeiten, 92, 97–116.Google Scholar
  4. Agwu, C. O. C., Njokuocha, R. C., & Mezue, O. (2004). The study of airborne pollen and spores circulating at “head level” in Nsukka environment. Bio-Research, 2, 7–14.Google Scholar
  5. Agwu, C. O. C., & Osibe, E. E. (1992). Airborne palynomorphs of Nsukka during the months of February–April, 1990. Nigerian Journal of Botany, 5, 177–185.Google Scholar
  6. Akram, A., Anjum, T., Ahmad, A., & Moeen, R. (2014). First report of Curvularia lunata causing leaf spots on Sorghum bicolor from Pakistan. Plant Disease, 98(7), 1007.3.  https://doi.org/10.1094/PDIS-1213-1291-PDN.CrossRefGoogle Scholar
  7. Aliyu, S. S., & Gambo, A. (2014). Isolation and identification of airborne fungal spores and fragments in buildings within Usmanu Danfodiyo University Sokoto, Nigeria. Aceh International Journal of Science and Technology, 3(2), 67–72.  https://doi.org/10.13170/aijst.0302.03.CrossRefGoogle Scholar
  8. Allitt, U. (1986). Identity of airborne hyaline, one-septate ascospores and their relation to inhalant allergy. Transactions of the British Mycological Society, 87, 147–154.CrossRefGoogle Scholar
  9. Almaguer, M., Aira, M.-J., Rodriguez-Rajo, F. J., Fernandez-Gonzalez, M., & Rojas-Flores, T. L. (2015). Thirty-four identifiable airborne fungal spores in Havana, Cuba. Annals of Agricultural and Environmental Medicine, 22(2), 215–220.  https://doi.org/10.5604/12321966.1152068.CrossRefGoogle Scholar
  10. Ataygul, E., Celenk, S., Canitez, Y., Bicakci, A., Malyer, H., & Sapan, N. (2007). Allergenic fungal spore concentrations in the atmosphere of Bursa, Turkey. Journal of Biodiversity and Environmental Sciences, 1(2), 73–79.Google Scholar
  11. Awad, A. H. (2005). Vegetation: A source of air fungal bio-contaminant. Aerobiologia, 21, 53–61.CrossRefGoogle Scholar
  12. Barilli, E., Moral, A., Sillero, J. C., & Rubiales, D. (2012). Clarification on rust species potentially infecting pea (Pisumsativum L.) crop and host range of Uromycespisi (Pers) Wint. Crop Protection, 37, 65–70.CrossRefGoogle Scholar
  13. Burch, M., & Levetin, E. (2002). Effects of meteorological conditions on spore plumes. International Journal of Biometeorology, 46, 107–117.  https://doi.org/10.1007/s00484-002-0127-1.CrossRefGoogle Scholar
  14. Burnett, H. L., & Hunter, B. B. (1998). Illustrated genera of imperfect fungi (4th ed., p. 218). Minnesota: APS Press.Google Scholar
  15. Bush, R. K., & Prochnau, J. J. (2004). Alternaria-induced asthma. Journal of Allergy and Clinical Immunology, 113, 227–234.CrossRefGoogle Scholar
  16. Calderon, C., Lacey, J., MacCartney, H. A., & Rosa, I. (1995). Seasonal and diurnal variation of airborne basidiomycete spore concentrations in Mexico City. Grana, 34, 260–268.CrossRefGoogle Scholar
  17. Carter, E., & Boudreaux, C. (2004). Tatal cerebral phaeohyphomycosis due to Curvularia lunata in an immunocompetent patient. Journal of Clinical Microbiology, 42(11), 5419–5423.  https://doi.org/10.1128/JCM.42.11.5419-5423.2004.CrossRefGoogle Scholar
  18. Chairin, T., Pornsuriya, C., Thaochan, N., & Sunpapao, A. (2017). Corynespora casiicola causes leaf spot disease of lettuce (Lactuca sativa) cultivated in hydroponic systems in Thailand. Australasian Plant Disease Notes, 12, 16.  https://doi.org/10.1007/s/3314-017-0241-X.CrossRefGoogle Scholar
  19. Chakraborty, P., Gupta-Bhattacharya, S., Chowdhury, I., Majumdar, M. R., & Chanda, S. (2001). Differences in concentrations of allergenic pollens and spores at different heights on an agricultural farm in West Bengal, India. Annals Agricultural and Environmental Medicine, 8, 123–130.Google Scholar
  20. Corden, J. M., Millington, W. M., & Mullins, J. (2003). Long-term trends and regional variation in the aeroallergen Alternaria in Cardiff and Derby UK—Are differences in climate and cereal production having an effect? Aerobiologia, 19, 191–199.CrossRefGoogle Scholar
  21. Da Cunha, K. C., Sutton, D. A., Gene, J., Cano, J., Capilla, J., Madrid, H., et al. (2014). Pithomyces species (Montagnulaceae) from clinical specimens: Identification and antifungal susceptibility profiles. Medical Mycology, 52(7), 748–757.  https://doi.org/10.1093/mmy/myu044.CrossRefGoogle Scholar
  22. Damialis, A., & Gioulekas, D. (2006). Airborne allergic fungal spores and meteorological factors in Greece: Forecasting possibilities. Grana, 45, 122–129.  https://doi.org/10.1080/00173130600601005.CrossRefGoogle Scholar
  23. Damialis, A., Kaimakamis, E., Konoglou, M., Akritidis, I., Traidl-Hoffmann, C., & Gioulekas, D. (2017). Estimating the abundance of airborne pollen and fungal spores at variable elevations using an aircraft: How high can they fly? Scientific Reports.  https://doi.org/10.1038/srep44535.CrossRefGoogle Scholar
  24. Ebner, M. R., Haselwandter, K., & Frank, A. (1989). Seasonal fluctuations of airborne fungal allergens. Mycological Research, 92, 170–176.CrossRefGoogle Scholar
  25. Essien, B. C., Taiga, A., Suleiman, M. N., Idachaba, S. O., Aniama, S. O., & Edegbo, E. (2013). A study of airborne fungal spores of Anyiagba, Kogi State, Nigeria. American Journal of Biomedical and Life Sciences, 1(4), 70–74.CrossRefGoogle Scholar
  26. Fernandez, D., Valencia, R. M., Molnar, T., Vega, A., & Sagues, E. (1998). Daily and seasonal variations of Alternaria and Cladosporium airborne spores in Leon (north-west, Spain). Aerobiologia, 14, 215–220.CrossRefGoogle Scholar
  27. Friesen, T. L., De Wolf, E. D., & Francl, L. J. (2001). Source strength of wheat pathogens during combine harvesting. Aerobiology, 17, 293–299.CrossRefGoogle Scholar
  28. Gioulekas, D., Damialis, A., Papakosta, D., Spieksma, F. T. M., Giouleka, P., & Patakas, D. (2004). Allergenic fungal spore records (15 years) and sensitization in patients with respiratory allergy in Thessaloniki-Greece. Journal of Investigational Allergology and Clinical Immunology, 14, 225–231.Google Scholar
  29. Grinn-Gofron, A. (2008). The variation in spore concentrations of selected fungal taxa associated with weather conditions in Szczecin, Poland, 2004–2006. Grana, 47, 139–146.  https://doi.org/10.1080/00173130802091385.CrossRefGoogle Scholar
  30. Grinn-Gofron, A., & Bosiacka, B. (2015). Effect of meteorological factors on the composition of selected fungal spores in the air. Aerobiologia, 31, 63–72.  https://doi.org/10.1007/s10453-014-9347-1.CrossRefGoogle Scholar
  31. Grinn-Gofron, A., Bosiacka, B., Bednarz, A., & Wolski, T. (2017). A comparative study of hourly and daily relationships between selected meteorological parameters and airborne fungal spore composition. Aerobiologia.  https://doi.org/10.1007/s10453-017-9493-3.CrossRefGoogle Scholar
  32. Hall, S. A. (1994). Modern pollen influx in tallgrass and shortgrass prairies, southern Great Plains, USA. Grana, 33, 321–326.CrossRefGoogle Scholar
  33. Hasnain, S. M. (1993). Influence of meteorological factors on the air spora. Grana, 32(3), 184–188.  https://doi.org/10.1080/00173139309428955.CrossRefGoogle Scholar
  34. Hernandez-Trejo, F., Munoz-Rodriguez, A. F., Tormo-Molina, R., & Silva-Palacios, I. (2012). Airborne ascospores in Merida (SW Spain) and effect of rain and other meteorological parameters on their concentration. Aerobiologia, 28(2), 13–26.  https://doi.org/10.1007/s10453-011-9207-1.CrossRefGoogle Scholar
  35. Herrero, B., Fombella-Blanco, M. A., Fernandez-Gonzalez, D., & Valencia-Barrera, R. M. (1996). The role of meteorological factors in determining the annual variation of Alternaria and Cladosporium spores in the atmosphere of Palencia, 1990–1992. International Journal of Biometeorology, 39, 139–142.CrossRefGoogle Scholar
  36. Hossain, M. S., & Pasha, M. K. (2012). Airborne fungal and pteridophytic spores in Chittagong University Campus, Chittagong. Journal of Asiatic Society of Bangladesh, Science, 38(1), 119–124.Google Scholar
  37. Huang, H. K., Liu, C. E., Liou, J. H., Hsiue, H. C., Hsiao, C. H., & Hsueh, P. R. (2010). Subcutaneous infection caused by Corynespora cassiicola, a plant pathogen. Journal of Infection, 60(2), 188–190.  https://doi.org/10.1016/j.jinf.2009.11.002.CrossRefGoogle Scholar
  38. Ianovici, N., Maria, C., Radutoiu, M. N., Hanis, A., & Tudorica, D. (2013). Variation in airborne fungal spore concentrations in four different microclimate regions in Romania. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 41(2), 450–457.CrossRefGoogle Scholar
  39. Ingold, C. T. (1971). Fungal spores. Their liberation and dispersal. Oxford: Clarendon Press.Google Scholar
  40. Jadon, K. S., & Shah, R. (2012). Effects of Drechslera bicolor infection on physiology of bell pepper. Journal of Plant Pathology and Microbiology, 3, 126.  https://doi.org/10.4172/2157-7471.1000126.CrossRefGoogle Scholar
  41. Jedryczka, M. (2014). Aeromycology: Studies of fungi in aeroplankton. Folia Biologica et Oecologica, 10, 18–26.  https://doi.org/10.2478/fobio-2014-003.CrossRefGoogle Scholar
  42. Kahmann, R., Steioberg, G., Basse, C., Feldbrugge, M., & Kamper, J. (2000). Ustilagomaydis, the causative agent of corn smut disease. In J. W. Kronstad (Ed.), Fungal pathology (pp. 347–371). Dordrecht: Springer.CrossRefGoogle Scholar
  43. Kamaluddeen, S. S., & Abhilasha, A. L. (2013). A new blight disease of rice caused by Curvularia lunata from Utter Pradesh. International Journal of Agricultural Science and Research, 3(5), 13–16.Google Scholar
  44. Kasprzyk, I., & Worek, M. (2006). Airborne fungal spores in urban and rural environments in Poland. Aerobiologia, 22, 169–176.CrossRefGoogle Scholar
  45. Katial, R., Zhang, Y., Jones, R., & Dyer, P. (1997). Atmospheric mold spore counts in relation to meteorological parameters. International Journal of Biometeorology, 41, 17–22.  https://doi.org/10.1007/s004840050048.CrossRefGoogle Scholar
  46. Khattab, A., & Levetin, E. (2008). Effect of sampling height on the concentration of airborne fungal spores. Annals of Allergy, Asthma & Immunology, 101(5), 529–534.  https://doi.org/10.1016/S1081-1206(10)60293-1.CrossRefGoogle Scholar
  47. Li, L., Lei, C., & Liu, Z.-G. (2010). Investigation of airborne fungi at different altitudes in Shenzhen University. Natural Science, 2(5), 506–514.  https://doi.org/10.4236/ns.2010.25063.CrossRefGoogle Scholar
  48. McNeil, J. C., & Palazzi, D. L. (2012). Ustilago as a cause of fungal peritonitis: Case report and review of the literature. Journal of the Pediatric Infectious Disease Society, 1(4), 337–339.  https://doi.org/10.1093/jpids/pis043.CrossRefGoogle Scholar
  49. Meri, A., Schneider, P., Wally, V., Breitenbach, M., & Simon-Nobbe, B. (2003). Sensitization to fungi: Epidemiology, comparative skin tests and ige reactivity of fungal extracts. Clinical and Experimental Allergy, 33, 1429–1438.CrossRefGoogle Scholar
  50. Molina, A., Angulo-Romero, J., Garcia-Pantaleon, I., Comtois, P., & Vilches, E. (1998). Preliminary statistical modeling of the presence of two conidial types of Cladosporium in the atmosphere of Cordoba, Spain. Aerobiologia, 14, 229–234.  https://doi.org/10.1007/BF02694211.CrossRefGoogle Scholar
  51. Moore-Landecker, E. (1990). Fundamentals of the fungi (3rd ed.). Englewood cliffs, NJ: Prentice Hall.Google Scholar
  52. Njokuocha, R. C., & Agwu, C. O. C. (2007). Airborne fungal spores in Nsukka municipality. Nigerian Journal of Botany, 20(2), 349–359.Google Scholar
  53. Njokuocha, R. C., Agwu, C. O. C., & Okezie, C. E. A. (2017). Effects of weather conditions on selected airborne fungal spores in the southern part of the state of Enugu, Nigeria. Grana, 54(4), 263–272.  https://doi.org/10.1080/00173134.2016.1248859.CrossRefGoogle Scholar
  54. Njokuocha, R. C., & Osayi, E. E. (2005). Airborne pollen and spore survey in relation to allergy and plant pathogens in Nsukka, Nigeria. Bio-Research, 3(1), 77–84.Google Scholar
  55. Njokuocha, R. C., & Ukeje, H. O. (2006). The study of airborne pollen precipitation in the University of Nigeria (Nsukka) botanic garden. Bio-Research, 4(2), 88–93.Google Scholar
  56. Nowicki, M., Nowakowska, M., Niezgoda, A., & Kozik, E. (2012). Alternaria black spot of crucifers: Symptoms, importance of disease and perspectives resistance breeding. Vegetables Crops Research Bulletin, 76, 5–19.Google Scholar
  57. Ogden, E. U., Raynor, G. S., Hayes, J. V., Lewis, D. M., & Haines, J. H. (1974). Manual for sampling airborne pollen (p. 182). New York: Haffner Press.Google Scholar
  58. Okten, S. S., Asan, A., Tungan, Y., & Ture, M. (2005). Airborne fungal concentration in east patch of Edirne City (Turkey) in autumn using two sampling methods. Trakya University Journal of Science, 6(1), 97–106.Google Scholar
  59. Oliveira, M., Ribeiro, H., Delgado, J. L., & Abreu, I. (2009). The effects of meteorological factors on airborne fungal spore concentration in two areas differing in urbanization level. International Journal of Biometeorology, 53, 61–73.  https://doi.org/10.1007/s00484-008-0191-2.CrossRefGoogle Scholar
  60. Oluma, H. O., & Amuta, E. U. (1999). Corynespora cassicola leaf spot of pawpaw (Carica papaya L.) in Nigeria. Mycopathologia, 145(1), 23–27.CrossRefGoogle Scholar
  61. Ozomen, O., Sahinduran, S., Haligur, M., & Albay, M. K. (2008). Clinopathological studies of facial eczema outbreak in sheep in southwest Turkey. Tropical Animal Health Production, 40, 545–551.CrossRefGoogle Scholar
  62. Pastor, F. J., & Guarro, J. (2008). Alternaria infections: Laboratory diagnosis and relevant clinical features. Clinical Microbiology and Infections, 14, 734–746.CrossRefGoogle Scholar
  63. Pepeljnjak, S., & Segvic, M. (2003). Occurrence of fungi in air and on plants in vegetation of different climatic regions in Croatia. Aerobiologia, 19, 11–19.  https://doi.org/10.1023/A:1022693032075.CrossRefGoogle Scholar
  64. Pernezny, K., Stoffella, P., Collins, J., Carroll, A., & Beaney, A. (2003). Control of target spot of tomato with fungicide systematic acquired resistance activators, and a biological agent. Plant Protection Science, 38(3), 81–88.  https://doi.org/10.17221/4855-PPS.CrossRefGoogle Scholar
  65. Plummer, K. M., & Templeton, M. D. (2011). Venturia inaequalis: The causal agent of apple scab. Molecular Plant Pathology, 12(2), 105–122.CrossRefGoogle Scholar
  66. Robert, K., Bush, M. D., Jay, J., & Prochnau, M. D. (2003). Alternaria-induced asthma. Journal of Allergy and Clinical Immunology, 113(2), 227–234.  https://doi.org/10.1016/j.jaci.2003.11.023.CrossRefGoogle Scholar
  67. Rodriguez-Rajo, F. J., Iglesias, I., & Jato, V. (2005). Variation assessment of airborne Alternaria and Cladosporium spores at different bioclimatical conditions. Mycological Research, 109(4), 497–507.  https://doi.org/10.1017/S0953756204001777.CrossRefGoogle Scholar
  68. Rolston, K. V., Hopfer, R. L., & Larson, D. L. (1985). Infections caused by Drechslera species: Case report and review of literature. Review of Infectious Disease, 7, 525–529.CrossRefGoogle Scholar
  69. Sabariego, C., de la Guardia, Diaz, & Alba, F. (2000). The effect of meteorological factors on the daily variation of airborne fungal spores in Granada (southern Spain). International Journal of Biometeorology, 44, 1–5.CrossRefGoogle Scholar
  70. Sadys, M., Adams-Groom, B., Herbert, R. J., & Kennedy, R. (2006). Comparison of fungal spore distributions using air sampling at Worcester, England (2006–2010). Aerobiologia.  https://doi.org/10.1007/s0453-016-9436-4.CrossRefGoogle Scholar
  71. Sakiyan, N., & Inceoglu, O. (2003). Atmospheric concentrations of Cladosporium Link and Alternaria Nees spores in Ankara and effects of meteorological factors. Turkish Journal of Botany, 27, 77–81.Google Scholar
  72. Sandeep, N. G., Adinarayana, M., Kumar, M. V., & Madhumathi, J. (2016). Effects of weather parameters on Corynespora leaf spot disease severity of Blackgram. IOSR Journal of Agriculture and Veterinary Science, 9(2 version II), 8–14.  https://doi.org/10.9790/2380-09220814.CrossRefGoogle Scholar
  73. Soylu, S., Dervis, S., & Soylu, E. M. (2011). First report of Nigrospora sphaerica causing leaf spots of Chinese wisteria: A new host of the pathogen. Plant Disease, 95(2), 219.  https://doi.org/10.1094/PDIS-10-10-0770.CrossRefGoogle Scholar
  74. Stepalska, D., & Wolek, J. (2005). Variation in fungal spore concentration of selected taxa associated to weather condition in Cracow, Poland, in 1997. Aerobiologia, 21, 43–52.CrossRefGoogle Scholar
  75. Sunder, S., Singh, R., Dodan, D. S., & Mehla, D. S. (2005). Effect of different nitrogen levels on brown spot (Drechslera oryzae) of rice and its management through host resistance and fungicides. Plant Disease Research, 20(2), 111–114.Google Scholar
  76. Tóth, B., Csősz, M., Dijksterhuis, J., Frisvad, J. C., & Varga, J. (2007). Pithomyces chartarum as a pathogen of wheat. Journal of Plant Pathology, 89(3), 405–408.Google Scholar
  77. Troutt, C., & Levetin, E. (2001). Correlation of spring spore concentration and meteorological conditions in Tulsa, Oklahoma. International Journal of Biometeorology, 45, 64–74.CrossRefGoogle Scholar
  78. Wright, E. R., Folgado, M., Rivera, M. C., Crelier, A., Vasquez, P., & Lopez, S. E. (2008). Nigrospora sphaerica causing leaf spot and twig and shoot blight on blueberry. A new host of the pathogen. Plant Disease, 92(1), 171.  https://doi.org/10.1094/pdis-92-1-0171b.CrossRefGoogle Scholar
  79. Yang, H., Zang, Y., Yuan, Y., Tang, J., & Chen, X. (2012). Selectivity by host plants affects the distribution of arbuscular mycorrhizal fungi: Evidence from ITS rDNA sequence metadata. BMC Evolutionary Biology, 12(1), 50.  https://doi.org/10.1186/1471-2148-12-50.CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Reginald Chukwuemeka Njokuocha
    • 1
  • Emmanuel Emeka Osayi
    • 1
  • Clara Nchedochukwu Ikegbunam
    • 1
  1. 1.Department of Plant Science and BiotechnologyUniversity of NigeriaNsukkaNigeria

Personalised recommendations