Advertisement

Aerobiologia

pp 1–11 | Cite as

Are the profilins an important component in the atmosphere? Ole e 2-like panallergen

  • Delia Fernández-GonzálezEmail author
  • Ana Mª Vega Maray
  • Zulima González Parrado
  • Rosa Mª Valencia Barrera
  • Pablo Gutiérrez
  • Paola De Nuntiis
  • Paolo Mandrioli
Original Paper
  • 43 Downloads

Abstract

The analysis of profilin Ole e 2 concentration and its relationship with pollen concentration was carried out in the atmosphere of León (located in north-western of Spain) during 3 years. Moreover, we have studied the influence of some atmospheric pollutants and climatic parameters using Spearman rank correlation and principal components analysis. As a result, the presence in the atmosphere of Ole e 2 is demonstrated. We can observe that in April and until mid-May, the peaks of Ole e 2 correspond to the high concentrations of pollen from various tree plants, such as Quercus, Populus, Betula, Cupressaceae. From this date until the middle of June, where the presence of this profilin begins to be scarce in the air, the concentration of Ole e 2 is linked to herbaceous plants: Rumex, Plantago and species of the family Poaceae. Statistical analysis showed that the factors of temperature get influenced the most in the presence of Ole e 2 in the atmosphere, followed by the relative humidity and precipitation. In our study, there was no clear correlation with atmospheric pollutants; however, an increase in NO2 and SO2 causes a decrease in profilin in the atmosphere.

Keywords

Ole e 2 profilin Pollen Atmospheric pollutants Meteorological factors PCA 

Notes

Acknowledgements

The authors want to thank different entities for financing this study by projects: Spanish Ministry of Science and Technology I+D+I for CGL2006-15103-C04-03 and the Castilla y León Government for SAN673-LE03-08, also the Health Department of the Castilla y León, through the RACYL-ULE.

References

  1. Ackaert, C., Kofler, S., Horejs-Hoeck, J., Zulehner, N., Asam, C., von Grafenstein, S., et al. (2014). The impact of nitration on the structure and immunogenicity of the major birch pollen allergen Bet v 1.0101. PLoS ONE, 9(8), e104520.CrossRefGoogle Scholar
  2. Alché, J. D., M’rani-Alaoui, M., Castro, A. J., & Rodríguez-García, M. I. (2004). Ole e 1, the major allergen from olive (Olea europaea L.) pollen, is newly synthesized and released to the culture medium during in vitro germination. Plant and Cell Physiology, 45(8), 1149–1157.CrossRefGoogle Scholar
  3. Alché, J. J., Castro, A. J., Jiménez-López, J. C., Morales, S., Zafra, A., Hamman-Khalifa, A. M., et al. (2007). Differential characteristics of Olive pollen from different cultivars: Biological and clinical implications. Journal of Investigational Allergology and Clinical Immunology, 17(1), 69–75.Google Scholar
  4. Aloisi, I., Del Duca, S., De Nuntiis, P., Vega Maray, A. M., Mandrioli, P., Gutiérrez, P., et al. (2018). Behavior of profilins in the atmosphere and in vitro, and their relationship with the performance of airborne pollen. Atmospheric Environment, 178, 231–241.  https://doi.org/10.1016/j.atmosenv.2018.01.051.CrossRefGoogle Scholar
  5. Arilla, M. C., Asturias, J. A., Gómez-Bayón, N., Martínez, A., Martínez, J., & Palacios, R. (1997). Production and characterization of profilin monoclonal antibodies. Allergologie et Immunopathologie, 25, 145–151.Google Scholar
  6. Asturias, J. A., Arilla, M. C., Aguirre, M., Gómez-Bayón, N., Martínez, A., Palacios, R., et al. (1999). Quantitification of profilins by a monoclonal antibody-based sandwich ELISA. Journal of Immunological Methods, 229, 61–71.CrossRefGoogle Scholar
  7. Barber, D., de la Torre, F., Feo, F., Florido, F., Guardia, P., Moreno, C., et al. (2008). Understanding patient sensitization profiles in complex pollen areas: A molecular epidemiological study. Allergy, 63(11), 1550–1558.CrossRefGoogle Scholar
  8. Beggs, P. J. (1998). Pollen and pollen antigen as triggers of asthma—What to mesure? Atmospheric Environment, 32(10), 1777–1783.CrossRefGoogle Scholar
  9. Buters, J., Prank, M., Sofiev, M., Pusch, G., Albertini, R., Annesi-Maesano, I., et al. (2015). Variation of the group 5 grass pollen allergen content of airborne pollen in relation to geographic location and time in season. Journal of Allergy and Clinical Immunology, 136(87–95), e86.Google Scholar
  10. Buters, J. T. M., Thibaudon, M., Smith, M., Kennedy, R., Rantio-Lehtimäki, A., Albertini, R., et al. (2012). Release of Bet v 1 from birch pollen from 5 European countries. Results from the HIALINE Study. Atmospheric Environment, 55, 496–505.CrossRefGoogle Scholar
  11. Chichiricco, G., & Picozzi, P. (2007). Reversible inhibition of the pollen germination and the stigma penetration in Crocus vernus ssp vernus (Iridaceae) following fumigations with NO2, CO, and O3 gases. Plant Biology, 9, 730–735.CrossRefGoogle Scholar
  12. Cuinica, L. C., Abreu, I., Joaquim, C. G., & da Silva, E. (2014). In vitro exposure of Ostrya carpinifolia and Carpinus betulus pollen to atmospheric levels of CO, O3 and SO2. Environmental Science and Pollution Research, 21, 2256–2262.CrossRefGoogle Scholar
  13. D’Amato, G., Cecchi, L., Bonini, S., Nunes, C., Annesi-Maesano, I., Behrendt, H., et al. (2007). Allergenic pollen and pollen allergy in Europe. Allergy, 62(9), 976–990.CrossRefGoogle Scholar
  14. D’Amato, G., de Palma, R., & Verga, A. (1991). Antigen activity of non-pollen parts (leaves and stems) of allergenic plants. Annals of Allergy, 67, 421–424.Google Scholar
  15. De Linares, C., Díaz de la Guardia, C., Nieto Lugilde, D., & Akba, F. (2010). Airborne study of grass allergen (Lol p 1) in different-sized particles. International Archives of Allergy and Immunology, 152, 49–57.CrossRefGoogle Scholar
  16. Emberlin, J. (1995). Analysis of allergens on airborne particles: Progress and problems. In Europäisches Pollenflug-Symposium (pp. 48–62). Duseldorf: Vorträge und Berichte.Google Scholar
  17. Fernández-González, D., González-Parrado, Z., Vega-Maray, A. M., Valencia-Barrera, R. M., Camazón-Izquierdo, B., De Nuntiis, P., et al. (2010). Platanus pollen allergen, Pla a 1: Quantification in the atmosphere and influence on a sensitizing population. Clinical and Experimental Allergy, 40(11), 1701–1708.CrossRefGoogle Scholar
  18. Fernández-González, D., Rodríguez-Rajo, F. J., González-Parrado, Z., Valencia-Barrera, R. M., Jato, V., & Moreno-Grau, S. (2011). Differences in atmospheric emissions of Poaceae pollen and Lol p 1 allergen. Aerobiologia, 27, 301–309.CrossRefGoogle Scholar
  19. Ferreira, F., Hawranek, T., Gruber, P., Wopfner, N., & Mari, A. (2004). Allergic croos-reactivity: From gene to the clinic. Allergy, 59, 243–267.CrossRefGoogle Scholar
  20. Galán, C., Antunes, C., Brandao, R., Torres, C., García-Mozo, H., Caeiro, E., et al. (2013). Airborne olive pollen counts are not representative of exposure to the major olive allergen Ole e 1. Allergy, 68, 809–812.CrossRefGoogle Scholar
  21. Galán, C., Ariatti, A., Bonini, M., Clot, B., Crouzy, B., Dahl, A., et al. (2017). Recommended terminology for aerobiological studies. Aerobiologia, 33(3), 293–295.CrossRefGoogle Scholar
  22. Galán, C., Cariñanos, P., Alcázar, P., & Domínguez, E. (2007). Spanish aerobiology network (REA): Management and quality manual. Córdoba: Universidad de Córdoba.Google Scholar
  23. González-Parrado, Z., Fernándz-González, D., Camazón, B., Valencia-Barrera, R. M., Vega-Maray, A. M., Asturias, J. A., et al. (2014). Molecular aerobiology—Plantago allergen Pla l 1 in the atmosphere. Annales of Agricultural and Environmental Medicine, 21(2), 282–289.CrossRefGoogle Scholar
  24. Grote, M., Vrtala, S., & Valenta, R. (1993). Monitoring of two allergens, Bet v I and profilin, in dry and rehydrated birch pollen by immunogold electron microscopy and immunoblotting. Journal of Histochemistry and Cytochemistry, 41(5), 745–750.CrossRefGoogle Scholar
  25. Jimenez-Lopez, J. C., Morales, S., Castro, A. J., Volkmann, D., Rodríguez-García, M. I., & Alché, J. D. (2012). Characterization of profilin polymorphism in pollen with a focus on multifunctionality. PLoS ONE, 7(2), e30878.CrossRefGoogle Scholar
  26. Jímenez-López, J. C., Rodríguez-García, M. I., & Alché, J. D. (2013). Analysis of the effects of polymorphism on pollen profiling structural functionality and the generation of conformational, T- and B-cell epitopes. PLoS ONE, 8(10), E76066.CrossRefGoogle Scholar
  27. Kandasamy, M. K., McKinney, E. C., & Meagher, R. B. (2002). Plant profilin isovariants are distinctly regulated in vegetative and reproductive tissues. Cell Motility and the Cytoskeleton, 52, 22–32.CrossRefGoogle Scholar
  28. Laskin, A., Gilles, M. K., Knopf, D. A., Wang, B., & China, S. (2016). Progress in the analysis of complex atmospheric particles. Annual Review of Analytical Chemistry, 9(1), 117–143.CrossRefGoogle Scholar
  29. Ledesma, A., Rodriguez, R., & Villalba, M. (1998). Olive-pollen profilin. Molecular and immunologic properties. Allergy, 53(5), 520–526.CrossRefGoogle Scholar
  30. Lippmann, M., & Chan, T. L. (1979). Cyclone sampler performance. In Symposium on advances in particle sampling and measurement (Vol. 39, pp. 7–11). Asheville: Staub - Reinhaltung der Luft.Google Scholar
  31. Morales, S., Jiménez-López, J. C., Castro, A. J., Rodríguez-García, M. I., & Alché, J. D. (2008). Olive pollen profilin (Ole e 2 allergen) co-localizes with highly active areas of the actin cytoskeleton and is released to the culture medium during in vitro pollen germination. Journal of Microscopy, 23(2), 332–341.CrossRefGoogle Scholar
  32. Moreno-Grau, S., Elvira-Rendueles, B., Moreno, J., Garcia-Sanchez, A., Vergara, N., Asturias, J. A., et al. (2006). Correlation between Olea europaea and Parietaria judaica pollen counts and quantification of their major allergens Ole e 1 and Par j 1-Par j 2. Annals of Allergy, Asthma & Immunology, 96, 858–864.CrossRefGoogle Scholar
  33. Plaza, M. P., Alcázar, P., Hernández-Ceballos, M. A., & Galán, C. (2016). Mismatch in aeroallergens and airborne grass pollen concentrations. Atmospheric Environment, 144, 361–369.CrossRefGoogle Scholar
  34. Rantio-Lehtimakï, A., Viander, M., & Koivikko, A. (1994). Airborne birch pollen antigens in different particle sizes. Clinical and Experimental Allergy, 24(1), 23–28.CrossRefGoogle Scholar
  35. Raulf, M., Buters, J. T. M., Chapman, M., Cecchi, L., de Blay, F., Doekes, G., et al. (2014). Monitoring of occupational and environmental aeroallergens—EAACI Position Paper. Concerted action of the EAACI IG Occupational allergy and serobiology & air pollution. Allergy, 69(10), 1280–1299.  https://doi.org/10.1111/all.12456.CrossRefGoogle Scholar
  36. Reinmuth-Selzle, K., Kampf, C. J., Lucas, K., Lang-Yona, N., Frohlich-Nowoisky, J., Shiraiwa, M., et al. (2017). Air pollution and climate change effects on allergies in the anthropocene: Abundance, interaction, and modification of allergens and adjuvants. Environmental Science and Technology, 51, 4119–4141.CrossRefGoogle Scholar
  37. Rodríguez, R., Villalba, M., Batanero, E., González, E. M., Monsalve, R. I., Huecas, S., et al. (2002). Allergenic diversity of the olive pollen. Allergy, 57(Suppl. 71), 6–16.CrossRefGoogle Scholar
  38. Rothkegel, M., Mayboroda, O., Rohde, M., Wucherpfennig, C., Valenta, R., & Jockusch, B. M. (1996). Plant and animal profilins are functionally equivalent and stabilize microfilaments in living animal cells. Journal of Cell Science, 109, 83–90.Google Scholar
  39. Santos, A., & Van Ree, R. (2011). Profilins: Mimickers of allergy or relevant allergens? International Archives of Allergy and Immunology, 155(3), 191–204.CrossRefGoogle Scholar
  40. Sharma, V. K., & Graham, N. J. D. (2010). Oxidation of amino acids, peptides and proteins by ozone: A review. Ozone: Science & Engineereing, 32(2), 81–90.CrossRefGoogle Scholar
  41. Solomon, W. R., Burge, H. A., & Muilenberg, M. L. (1983). Allergen carriage by atmospheric aerosol, I: Ragweed pollen determinants in smaller micronic fractions. Journal of Allergy and Clinical & Immunology, 72, 443e447.CrossRefGoogle Scholar
  42. Sousa, R., Duque, L., Duarte, A. J., Gomes, C. R., Ribeiro, H., Cruz, A., et al. (2012). In vitro exposure of Acer negundo pollen to atmospheric levels of SO2 and NO2: Effects on allergenicity and germination. Environmental Science and Technology, 46, 2406–2412.CrossRefGoogle Scholar
  43. Staiger, C. J. (2000). Signaling to the actin cytoskeleton in plants. Annual Review of Plant Physiology and Plant Molecular Biology, 51, 257–288.CrossRefGoogle Scholar
  44. Staiger, C. J., & Blanchoin, L. (2006). Actin dynamics: Old friends with new stories. Current Opinion in Plant Biology, 9, 554–562.CrossRefGoogle Scholar
  45. Suárez-Cervera, M., Asturias, J., Vega Maray, A. M., Castells, T., López-Iglesias, C., Ibarrola, I., et al. (2005). The role of allergenic proteins Pla a 1 and Pla a 2 in the germination of Platanus acerifolia pollen grains. Sex Plant Reproduction, 18, 101–112.CrossRefGoogle Scholar
  46. Valenta, R., Duchene, M., Ebner, C., Valent, P., Sillaber, C., Deviller, F., et al. (1992). Profilins constitute a novel family of functional plant pan-allergens. Journal of Experimental Medicine, 175, 377–385.CrossRefGoogle Scholar
  47. Valenta, R., Duchene, M., Pettenburger, K., Sillaber, C., Valent, P., Bettelheim, P., et al. (1991). Identification of profilin as a novel pollen allergen: IgE autoreactivity in sensitized individuals. Science, 253(5019), 557–560.CrossRefGoogle Scholar
  48. Vara, A., Fernández-González, M., Aira, M. J., & Rodríguez-Rajo, F. J. (2016). Oleaceae cross-reactions as potential pollinosis cause in urban areas. Science of the Total Environment, 542, 435–440.CrossRefGoogle Scholar
  49. Vega Maray, A. M., Fernández González, D., Valencia Barrera, R. M., Polo, F., Seoane Camba, J. A., & Suárez Cervera, M. (2004). Lipid transfer proteins in Parietaria Judaica pollen grains: Immunocytochemical localization and function. European Journal of Cell Biology, 83, 493–497.CrossRefGoogle Scholar
  50. Velicer, W. F., & Jackson, D. N. (1990). Component analysis versus common factor analysis: Some issues in selecting an appropriate procedure. Multivariate Behavioral Research, 25, 1–28.CrossRefGoogle Scholar
  51. Vidali, L., & Hepler, P. K. (2001). Actin and pollen tube growth. Protoplasma, 215(1–4), 64–76.CrossRefGoogle Scholar
  52. Visez, N., Chassard, G., Azarkan, N., Naas, O., Sénéchal, H., Sutra, J. P., et al. (2015). Wind-induced mechanical rupture of birch pollen: Potential implications for allergen dispersal. Journal of Aerosol Science, 89, 77–84.CrossRefGoogle Scholar
  53. Vrtala, S., Grote, M., Duchene, M., van Ree, R., Kraft, D., Scheiner, O., et al. (1993). Properties of tree and grass pollen allergens: Reinvestigation of the linkage between solubility and allergenicity. International Archives of Allergy and Immunology, 102(2), 160–169.CrossRefGoogle Scholar
  54. Worden, K., & Farrar, C. R. (2007). Theme issue: Structural health monitoring. Philosophical Transactions of the Royal Society, Series A, 365(1861), 299–632.Google Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Delia Fernández-González
    • 1
    • 3
    Email author
  • Ana Mª Vega Maray
    • 1
  • Zulima González Parrado
    • 1
  • Rosa Mª Valencia Barrera
    • 1
  • Pablo Gutiérrez
    • 2
  • Paola De Nuntiis
    • 3
  • Paolo Mandrioli
    • 3
  1. 1.Department of Biodiversity and Environmental Management (Botany)University of LeónLeónSpain
  2. 2.Department of Management and Business EconomicsUniversity of LeónLeónSpain
  3. 3.Institute of Atmospheric Sciences and Climate, National Research CouncilBolognaItaly

Personalised recommendations