Advertisement

Aerobiologia

pp 1–12 | Cite as

Aerobiology and passive restoration of biological soil crusts

  • Steven D. Warren
  • Larry L. St. Clair
  • Steven D. Leavitt
Original Paper
  • 37 Downloads

Abstract

Biological soil crusts (BSCs) exist commonly on soil surfaces in many arid and semiarid areas, and disturbed soil surfaces in more mesic environments. BSCs perform many essential ecological functions. Substantial resources have been invested trying to restore or replace BSCs that have been damaged by anthropogenic disturbances, with various levels of success. The nexus of sciences related to BSC establishment and restoration, and to aerobiology suggests that crusts are established and re-established naturally via commonly occurring ecological processes. Formation of BSCs can be accelerated by implementing traditional or novel land rehabilitation techniques that create near-surface turbulence that facilitates the deposition of airborne BSC organisms. Sexual and asexual propagules of BSC organisms are found naturally in the atmosphere and are transported up to very long distances between continents and hemispheres. Whether restoration of BSCs occurs naturally in this fashion, or through efforts to produce and disseminate artificial inoculants, success is ultimately moderated and governed by the timing and frequency of adequate precipitation relative to the arrival of viable propagules on suitable substrates at appropriate times of year. For the greatest ecological and economic benefit, we suggest that efforts should focus on minimizing the scope and scale of unnecessary anthropogenic disturbance to BSC communities.

Keywords

Cyanobacteria Algae Lichens Bryophytes Airborne Reclamation Arid lands 

Notes

Authors’ contribution

Conceived and originally written by Warren. Edited and additional material by St. Clair and Leavitt.

References

  1. Almuhanna, E. A. (2015). Dustfall associated with dust storms in the Al-Ahsa Oasis of Saudi Arabia. Open Journal of Air Pollution, 4, 65–75.CrossRefGoogle Scholar
  2. Amo de Paz, G., Cubas, P., Crespo, A., Elix, J. A., & Lumbsch, H. T. (2012). Transoceanic dispersal and subsequent diversification on separate continents shaped diversity of the Xanthoparmelia pulla group (Ascomycota). PLoS ONE, 7, e39683.CrossRefGoogle Scholar
  3. Anderson, D. C., Harper, K. T., & Rushforth, S. R. (1982). Recovery of cryptogamic soil crusts from grazing on Utah winter ranges. Journal of Range Management, 35, 355–359.CrossRefGoogle Scholar
  4. Antoninka, A., Bowker, M. A., Reed, S. C., & Doherty, K. (2016). Production of greenhouse-grown biocrust mosses and associated cyanobacteria to rehabilitate dryland soil function. Restoration Ecology, 24, 324–335.CrossRefGoogle Scholar
  5. Bailey, R. H. (1966). Studies on the dispersal of lichen soredia. Journal of the Linnean Society of London, Botany, 59, 479–490.CrossRefGoogle Scholar
  6. Bannister, J. M., & Blanchon, D. J. (2003). The lichen genus Ramalina Ach. (Ramalinaceae) on the outlying islands of the New Zealand geographic area. Lichenologist, 3, 137–146.CrossRefGoogle Scholar
  7. Barberán, A., Henley, J., Fierer, N., & Casamayor, E. O. (2014). Structure, inter-annual recurrence, and global-scale connectivity of airborne microbial communities. Science of the Total Environment, 487, 187–195.CrossRefGoogle Scholar
  8. Barberán, A., Ladau, J., Leff, J. W., Pollard, K. S., Menninger, H. L., Dunn, R. R., et al. (2015). Continental-scale distributions of dust-associated bacteria and fungi. Proceedings of the National Academy of Science, 112, 5756–5761.CrossRefGoogle Scholar
  9. Belnap, J. (1993). Recovery rates of cryptobiotic crusts: Inoculant use and assessment methods. Great Basin Naturalist, 53, 89–95.Google Scholar
  10. Belnap, J., & Eldridge, D. (2001). Disturbance and recovery of biological soil crusts. In J. Belnap & O. L. Lange (Eds.), Biological soil crusts: Structure, function and management (pp. 363–383). Berlin: Springer.CrossRefGoogle Scholar
  11. Belnap, J., & Lange, O. L. (Eds.). (2001). Biological soil crusts: Structure, function and management. Berlin: Springer.Google Scholar
  12. Belnap, J., & Warren, S. D. (2002). Patton’s tracks in the Mojave Desert, USA: An ecological legacy. Arid Land Research and Management, 16, 245–258.CrossRefGoogle Scholar
  13. Benninghoff, W. J. (1991). Aerobiology and its significance in biogeography and ecology. Grana, 30, 9–15.CrossRefGoogle Scholar
  14. Bowker, M. A. (2007). Biological soil crust rehabilitation in theory and practice: An underexploited opportunity. Restoration Ecology, 15, 13–23.CrossRefGoogle Scholar
  15. Bowker, M. A., & Antoninka, A. J. (2016). Rapid ex situ culture of N-fixing soil lichens and biocrusts is enhanced by complementarity. Plant and Soil.  https://doi.org/10.1007/s11104-016-2929-7.CrossRefGoogle Scholar
  16. Bu, C., Wu, S., Yang, Y., & Zheng, M. (2014). Identification of factors influencing the restoration of cyanobacteria-dominated biological soil crusts. PLoS ONE, 9, e90049.CrossRefGoogle Scholar
  17. Büdel, B., & Wessels, D. C. J. (1986). Parmelia hueana Gyeln., a vagrant lichen from the Namib Desert, SWA/Namibia. I Anatomical and reproductive adaptation. Dinteria, 12, 3–16.Google Scholar
  18. Buttars, S. M., St. Clair, L. L., Johansen, J. R., Sray, J. C., Payne, M. C., Webb, B. L., et al. (1998). Pelletized cyanobacterial soil amendment: Laboratory testing for survival, escapability, and nitrogen fixation. Arid Soil Research and Rehabilitation, 12, 165–178.Google Scholar
  19. Callison, J., Brotherson, J. D., & Bowns, J. E. (1985). The effects of fire on the blackbrush [Coleogyne ramosissima] community of southwestern Utah. Journal of Range Management, 38, 535–538.CrossRefGoogle Scholar
  20. Carson, J. L., & Brown, R. M. (1976). The correlation of soil algae, airborne algae, and fern spores with meteorological conditions on the Island of Hawaii. Pacific Science, 30, 197–205.Google Scholar
  21. Castellani, F. (2005). Historical monuments: The film. Nature, 43, 100–101.CrossRefGoogle Scholar
  22. Castenholz, R. W., & Garcia-Pichel, F. (2012). Cyanobacterial responses to UV radiation. In B. A. Whitton (Ed.), Ecology of Cyanobacteria II (pp. 481–499). Dordrecht: Springer.CrossRefGoogle Scholar
  23. Chen, R., Zhang, Y., Li, Y., Wei, W., Zhang, J., & Wu, Nan. (2009). The variation of morphological features and mineralogical components of biological soil crusts in the Gurbantunggut Desert of Northwestern China. Environmental Geology, 57(5), 1135–1143.CrossRefGoogle Scholar
  24. Chiquoine, L. P., Arbella, S. R., & Bowker, M. A. (2016). Rapidly restoring biological soil crusts and ecosystem functions in a severely disturbed desert ecosystem. Ecological Applications, 26, 1260–1272.CrossRefGoogle Scholar
  25. Cole, D. N. (1990). Trampling disturbance and recovery of cryptogamic soil crusts in Grand Canyon National Park. The Great Basin Naturalist, 50, 321–325.Google Scholar
  26. Cole, C., Stark, L. R., Bonine, M. L., & McLetchie, D. N. (2010). Transplant survivorship of bryophyte soil crusts in the Mojave Desert. Restoration Ecology, 18, 198–205.CrossRefGoogle Scholar
  27. Danin, A. (1999). Desert rocks as plant refugia in the Near East. The Botanical Review, 65(2), 93–170.CrossRefGoogle Scholar
  28. Darwin, C. (1846). An account of the fine dust which often falls on vessels in the Atlantic Ocean. Quarterly Journal of the Geological Society of London, 2, 26–30.CrossRefGoogle Scholar
  29. Després, V. R., Huffman, J. A., Burrows, S. M., Hoose, C., Safatov, A. S., Buryak, G., et al. (2012). Primary biological aerosol particles in the atmosphere: A review. Tellus, 64, 11598.Google Scholar
  30. Doherty, O. M., Riemer, N., & Hameed, S. (2008). Saharan mineral dust transport into the Caribbean: Observed atmospheric controls and trends. Journal of Geophysical Research, 113, D07211.CrossRefGoogle Scholar
  31. Dojani, S., Büdel, S., Deutschewitz, K., & Weber, B. (2011). Rapid succession of biological soil crusts after experimental disturbance in the Succulent Karoo, South Africa. Applied Soil Ecology, 48, 263–269.CrossRefGoogle Scholar
  32. Dor, I., & Danin, D. (2001). Life strategies of Microcoleus vaginatus: A crust forming cyanophyte on desert soils. Nova Hedwigia, 123, 317–339.Google Scholar
  33. Dubey, S., Dixit, A., & Boswal, M. V. (2010). Seasonal distribution of aero algal allergens in the wetlands of Kanpur. The Bioscan, 3, 673–680.Google Scholar
  34. Dümig, A., Veste, M., Hagedorn, F., Fischer, T., Lange, P., Spröte, R., et al. (2013). Biological soil crusts on initial soils: Organic dynamics and chemistry under temperate climatic conditions. Biogeosciences, 10, 851–894.CrossRefGoogle Scholar
  35. Durrell, L. W. (1962). Algae of death valley. Transactions of the American Microscopical Society, 81, 267–273.CrossRefGoogle Scholar
  36. Ekström, M., McTainsh, G. H., & Chappell, A. (2004). Australian dust storms: Temporal trends and relationships with synoptic pressure distributions (1960–00). International Journal of Climatology, 24, 1581–1599.CrossRefGoogle Scholar
  37. Eldridge, D. J., & Ferris, J. M. (1999). Recovery of populations of the soil lichen Psora crenata after disturbance in arid South Australia. The Rangeland Journal, 21, 194–198.CrossRefGoogle Scholar
  38. Favero-Longo, S. E., Sandrone, S., Matteucci, E., Appolonia, L., & Piervittori, R. (2014). Spores of lichen-forming fungi in the mycoaerosol and their relationships with climate factors. Science of the Total Environment, 466–467, 26–33.CrossRefGoogle Scholar
  39. Fernández-Mendoza, F., & Pritzen, C. (2013). Pleistocene expansion of the bipolar lichen Cetraria aculeata into Southern hemisphere. Molecular Ecology, 22, 1961–1983.CrossRefGoogle Scholar
  40. Galloway, D. J., & Aptroot, A. (1995). Bipolar lichens: A review. Cryptogamic Botany, 5, 184–191.Google Scholar
  41. Gębarowska, E., Pusz, W., Kucińska, J., & Wita, W. (2017). Comparative analysis of airborne bacteria and fungi in two salt mines in Poland. Aerobiologia.  https://doi.org/10.1007/s10453-017-9502-6.CrossRefGoogle Scholar
  42. Genitsaris, S., Kormas, K. A., & Moustaka-Gouni, M. (2011). Airborne algae and cyanobacteria: Occurrence and related health effects. Frontiers in Bioscience, 3, 772–787.Google Scholar
  43. Golan, J. J., & Pringle, A. (2017). Long-distance dispersal of fungi. Microbiology Spectrum.  https://doi.org/10.1128/microbiolspec.funk-0047-2016.CrossRefGoogle Scholar
  44. Gosselin, M. I., Rathnayake, C. M., Crawford, I., Pöhlker, C., Fröhlich-Nowolsky, J., Schmer, B., et al. (2016). Fluoresent bioaerosol particle, molecular tracer, and fungal spore concentrate.ons during dry and rainy periods in a semiarid forest. Atmospheric Chemistry and Physics, 16, 15165–15184.CrossRefGoogle Scholar
  45. Green, T. G., & Broady, P. A. (2001). Biological soil crusts of Antarctica. In J. Belnap & O. L. Lange (Eds.), Biological soil crusts: Structure, function, and management (pp. 133–139). Berlin: Springer.CrossRefGoogle Scholar
  46. Griffin, D. W., Kellogg, C. A., Garrison, V. H., & Shinn, E. A. (2002). The global transport of dust: An intercontinental river of dust, microorganisms and toxic chemicals flows through the Earth’s atmosphere. American Scientist, 90, 228–235.CrossRefGoogle Scholar
  47. Guo, Y., Zhao, H., Zuo, X., Drake, S., & Zhao, X. (2008). Biological soil crust development and its topsoil properties in the process of dune stabilization, Inner Mongolia, China. Environmental Geology, 54, 653–662.CrossRefGoogle Scholar
  48. Hallar, A. G., Chirokova, G., McCubbin, I., Painter, T. H., Wydinmyer, C., & Dodson, C. (2011). Atmospheric bioaerosols transported by dust storms in the western United States. Geophysical Research Letters, 38, L17801.CrossRefGoogle Scholar
  49. Harding, T., Jungblut, A. D., Lovejoy, C., & Vincent, W. F. (2011). Microbes in high arctic snow and implications for the cold biosphere. Applied and Environmental Microbiology, 77, 3234–3243.CrossRefGoogle Scholar
  50. Harmata, K., & Olech, M. (1991). Transect for aerobiological studies from Antarctica to Poland. Grana, 30, 458–463.CrossRefGoogle Scholar
  51. Heinken, T. (1999). Dispersal patterns of terricolous lichens by thallus fragments. The Lichenologist, 31, 603–612.CrossRefGoogle Scholar
  52. Herbold, C. W., Lee, C. K., McDonald, I. R., & Cary, S. C. (2014). Evidence of global-scale aeolian dispersal and endemism in isolated geothermal microbial communities of Antarctica. Nature Communications, 5, 3875.CrossRefGoogle Scholar
  53. Holzinger, A., & Karsten, U. (2013) Desiccation stress and tolerance in green algae: Consequences for ultrastructure, physiological, and molecular mechanisms. Frontiers in Plant Science, 4, article 327Google Scholar
  54. Horton, W., Miura, H., Onishchenko, O., Couede, L., Arnas, C., Escarguel, A., et al. (2016). Dust devil dynamics. Journal of Geophysical Research: Atmospheres, 121, 7197–7214.  https://doi.org/10.1002/2016JD024832.CrossRefGoogle Scholar
  55. Howard, G. L., & Warren, S. D. (1998). The incorporation of cyanobacteria into starch pellets and determination of escapability rates for use in land rehabilitation. US Army Construction Engineering Research Laboratory Special Report 98/56Google Scholar
  56. Huang, J., & McElroy, M. B. (2014). Contributions of the Hadley and Ferrel circulation to the energetics of the atmosphere over the past 32 years. Journal of Climate, 17, 2656–2666.CrossRefGoogle Scholar
  57. Hugonnot, V., & Celle, J. (2012). Asexual reproduction by leaf fragmentation in Mnium stellare Hedw. Journal of Bryology, 39, 67–70.CrossRefGoogle Scholar
  58. Jeffries, D. L., & Klopatek, J. M. (1987). Effects of grazing on the vegetation of the blackbrush association. Journal of Range Management, 40, 390–392.CrossRefGoogle Scholar
  59. Johansen, J. R. (2001). Impacts of fire on biological soil crusts. In J. Belnap & O. L. Lange (Eds.), Biological soil crusts: Structure, function, and management (pp. 386–397). Berlin: Springer.Google Scholar
  60. Johansson, V., Lönnell, N., Rannik, Ü., Sundberg, S., & Hylander, K. (2015). Air humidity thresholds trigger moss spore release to extend dispersal in space and time. Functional Ecology, 30, 1196–1204.CrossRefGoogle Scholar
  61. Jungblut, A. D., Lovejoy, C., & Vincent, W. F. (2010). Global distribution of cyanobacterial ecotypes in the cold biospherere. The ISME Journal, 4, 191–202.CrossRefGoogle Scholar
  62. Jungblut, A. D., Vincent, W. F., & Lovejoy, C. (2012). Eukaryotes in Arctic and Antarctic cyanobacterial mats. FEMS Microbial Ecology, 82, 416–428.CrossRefGoogle Scholar
  63. Kade, A., & Warren, S. D. (2002). Soil and plant recovery after historic military disturbances in the Sonoran Desert, USA. Arid Land Research and Management, 16, 231–243.CrossRefGoogle Scholar
  64. Kellogg, C. A., & Griffin, D. W. (2006). Aerobiology and the global transport of desert dust. Trends in Ecology & Evolution, 21, 638–644.CrossRefGoogle Scholar
  65. Kharkongor, D., & Ramanujam, P. (2014). Diversity and species composition of subaerial algal communities in forested areas of Meghalaya, India. International Journal of Biodiversity, 2014, 456202.CrossRefGoogle Scholar
  66. Kjellsson, J., & Döös, K. (2012). Lagrangian decomposition of the Hadley and Ferrel cells. Geophysical Research Letters, 39, L15807.CrossRefGoogle Scholar
  67. Kok, J. F., Parteli, E. J. R., Michaels, T. I., & Karam, D. B. (2012). The physics of wind-blown sand and dust. Reports on Progress in Physics, 75, 106901.CrossRefGoogle Scholar
  68. Kubečková, K., Johansen, J. R., Warren, S. D., & Sparks, R. (2003). Development of immobilized cyanobacterial amendments for reclamation of microbiotic soil crusts. Algological Studies, 109, 341–362.CrossRefGoogle Scholar
  69. Kvíderová, J. (2012). Research on cryosestic communities in Svalbard: The snow algae of temporary snowfields in Petuniabukta, Central Svalbard. Czech Polar Reports, 2, 8–19.CrossRefGoogle Scholar
  70. Laaka-Lindberg, S., Korpelainen, H., & Pohjamo, M. (2003). Dispersal of asexual propagules in bryophytes. The Journal of Hattori Botanical Laboratories, 93, 319–330.Google Scholar
  71. Lalley, J. S., & Viles, H. A. (2008). Recovery of lichen-dominated soil crusts in a hyperarid desert. Biodiversity and Conservation, 17, 1–20.CrossRefGoogle Scholar
  72. Lamenti, G., Tiano, P., & Tomaselli, L. (2000). Biodeterioration of ornamental marble statues in Boboli Gardens (Florence, Italy). Journal of Applied Phycology, 12, 427–433.CrossRefGoogle Scholar
  73. Leavitt, S. D., & Lumbsch, H. T. (2016). Ecological biogeography of lichen-forming fungi. In I. S. Druzhinina & C. P. Kubicek (Eds.), Environmental and microbial relationships (pp. 15–37). Cham: Springer International Publishing.CrossRefGoogle Scholar
  74. Lee, T. F., & Eggleston, P. M. (1989). Airborne algae and cyanobacteria. Grana, 28, 63–66.CrossRefGoogle Scholar
  75. Lee, H. N., Igarashi, Y., Chiba, M., Aoyama, M., Hirose, K., & Tanaka, T. (2006). Global model simulation of the transport of Asian and Saharan dust: Total deposition of dust mass in Japan. Water, Air, and Soil pollution, 169, 137–166.CrossRefGoogle Scholar
  76. Lewandowska, A. U., Śliwińska-Wilczewska, S., & Woźniczka, D. (2017). Identification of cyanobacteria and microalgae of various sizes in the air over the Southern Baltic Sea. Marine Pollution Bulletin, 125, 30–38.CrossRefGoogle Scholar
  77. Lewis, J. M. (2003). Ooishi’s observation viewed in the context of jet stream discovery. Bulletin of the American Meteorological Society, 84(3), 357–369.  https://doi.org/10.1175/BAMS-84-3-357369.CrossRefGoogle Scholar
  78. Li, F., Ginoux, P., & Ramaswamy, V. (2008). Distribution, transport, and deposition of mineral dust in the Southern Ocean and Antarctica: Contribution of major sources. Journal of Geophysical Research, 113, D10207.CrossRefGoogle Scholar
  79. Li, Y. F., Li, Z. W., Jia, Y. H., & Zhang, K. (2016). Biological soil crust formation under artificial vegetation effect and its properties in the Mugetan sandy land, northeastern Qinghai-Tibet Plateau. Earth and Environmental Science, 39, 012070.Google Scholar
  80. Li, X. R., Xiao, H. L., He, M. Z., & Zhang, J. G. (2006). Sand barriers of straw checkerboards for habitat restoration in extremely arid desert regions. Ecological Engineering, 28, 149–157.CrossRefGoogle Scholar
  81. Li, X.-R., Zhao, H.-Y., Wang, X.-P., Zhu, Y.-G., & O’Conner, P. J. (2003). The effects of sand stabilization and revegetation on cryptogam species diversity and soil fertility in the Tengger Desert, Northern China. Plant and Soil, 251, 237–245.CrossRefGoogle Scholar
  82. Lönnell, N., Hylander, K., Jonsson, B. G., & Sundberg, S. (2012). The fate of the missing spores—Patterns of realized dispersal beyond the closest vicinity of a sporulating moss. PLoS ONE, 7(7), e41987.CrossRefGoogle Scholar
  83. Macedo, M. F., Miller, A. Z., Dionísio, A., & Saiz-Jimenez, C. (2009). Biodiversity of cyanobacteria and green algae on monuments in the Mediterranean Basin: An overview. Microbiology, 155, 3476–3490.CrossRefGoogle Scholar
  84. Maestre, F. T., Martín, N., Díez, B., López-Poma, R., Santos, F., Luque, I., et al. (2006). Watering, fertilization, and slurry inoculation promote recovery of biological crust function in degraded soils. Microbial Ecology, 52, 365–377.CrossRefGoogle Scholar
  85. Marshall, W. A. (1997). Seasonality in Antarctic airborne fungal spores. Applied and Environmental Microbiology, 63, 220–2245.Google Scholar
  86. Marshall, W. A., & Chalmers, M. O. (1997). Airborne dispersal of antarctic terrestrial algae and cyanobacteria. Ecography, 20, 585–594.CrossRefGoogle Scholar
  87. Marshall, W. A., & Convey, P. (1997). Dispersal of moss propagules on Signy Island, maritime Antarctic. Polar Biology, 18, 376–383.CrossRefGoogle Scholar
  88. McGorum, B. C., Pirie, R. S., Glendinning, L., McLachlan, G., Metcalf, J. S., Banack, S. A., et al. (2015). Grazing livestock are exposed to terrestrial cyanobacteria. Veterinary Research, 46, 16.  https://doi.org/10.1186/s13567-015-0143-x.CrossRefGoogle Scholar
  89. McLeman, R. A., Dupre, J., Berrang Ford, L., Ford, J., Gajewski, K., & Marchildon, G. (2014). What we learned from the Dust Bowl: Lessons in science, policy, and adaptation. Population and Environment, 35, 417–440.CrossRefGoogle Scholar
  90. McTainsh, G. H., Lynch, A. W., & Tews, E. K. (1998). Climatic controls upon dust storm occurrence in eastern Australia. Journal of Arid Environments, 39, 457–466.CrossRefGoogle Scholar
  91. Meier, F. C., & Lindbergh, C. A. (1935). Collecting microorganisms from the Arctic atmosphere: With field notes and material. The Scientific Monthly, 40, 5–20.Google Scholar
  92. Metzger, S. M., Balme, M. R., Towner, M. C., Bos, B. J., Ringrose, T. J., & Patel, M. R. (2011). In situ measurements of particle load and transport in dust devils. Icarus, 214, 766–772.CrossRefGoogle Scholar
  93. Miller, N. G., & McDaniel, S. F. (2004). Bryophyte disperal inferred from colonization of an introduced substrate on Whiteface Mountain, New York. American Journal of Botany, 91, 1173–1182.CrossRefGoogle Scholar
  94. Muñoz, J., Felicísimo, Á. M., Cabezas, F., Burgaz, A. R., & Martínez, I. (2004). Wind as a long-distance dispersal vehicle in the Southern Hemisphere. Science, 304, 1144–1147.CrossRefGoogle Scholar
  95. Nagy, M. L., Pérez, A., & Garcia-Pichel, F. (2005). The prokaryotic diversity of biological soil crusts in the Sonoran Desert (Organ Pipe Cactus National Monument, AZ). FEMS Microbiology Ecology, 54, 233–245.CrossRefGoogle Scholar
  96. Nickling, W. G. (1978). Eolian sediment transport during dust storms: Slims River Valley, Yukon Territory. Canadian Journal of Earth Sciences, 15, 1069–1084.CrossRefGoogle Scholar
  97. Orlovsky, L., Orlovsky, N., & Durdyev, A. (2005). Dust storms in Turkmenistan. Journal of Arid Environments, 60, 83–97.CrossRefGoogle Scholar
  98. Park, C. H., Li, X.-R., Jia, R. L., & Hur, J. S. (2017). Combined application of cyanobacteria with soil fixing chemicals for rapid induction of biological soil crust formation. Arid Land Research and Management, 31, 81–93.CrossRefGoogle Scholar
  99. Patzelt, D. J., Hodac, L., Friedl, T., Pietrasiak, N., & Johansen, J. R. (2014). Biodiversity of soil cyanobacteria in the hyper-arid Atacama Desert, Chile. Journal of Phycology, 50, 698–710.CrossRefGoogle Scholar
  100. Pearce, D. A., Bridge, P. D., Hughes, K. A., Sattler, B., Psenner, R., & Russell, N. J. (2009). Microorganisms in the atmosphere over Antarctica. FEMS Microbiology Ecology, 69, 143–157.CrossRefGoogle Scholar
  101. Piñeiro, R., Popp, M., Hassel, K., Listl, D., Westergaard, K. B., Flatberg, K. I., et al. (2012). Circumarctic dispersal and long-distance colonization of South America: The moss genus Cinclidium. Journal of Biogeography, 39, 2041–2051.CrossRefGoogle Scholar
  102. Pohjamo, M., Laaka-Lindberg, S., Ovaskainen, O., & Korpelainen, H. (2006). Dispersal potential of spores and asexual propagules in the epixylic hepatic Anastrophyllum hellerianum. Evolutionary Ecology, 20, 415–430.CrossRefGoogle Scholar
  103. Pointing, S. B., & Belnap, J. (2014). Disturbance to desert soil ecosystems contributes to dust-mediated impacts at regional scales. Biodiversity Conservation, 23, 1659–1667.CrossRefGoogle Scholar
  104. Potts, M. (1994). Desiccation tolerance of prokaryotes. Microbiological Reviews, 58, 755–805.Google Scholar
  105. Prospero, J. M. (1999). Long-range transport of mineral dust in the global atmosphere: Impact of African dust on the environment of the southeastern United States. Proceedings of the National Academy of Science, 96, 3396–3403.CrossRefGoogle Scholar
  106. Prospero, J. M., & Lamb, P. J. (2003). African droughts and dust transport to the Caribbean: Climate change implications. Science, 302, 1024–1027.CrossRefGoogle Scholar
  107. Prospero, J. M., & Mayor-Bracero, O. L. (2013). Understanding the transport and impact of African dust on the Caribbean Basin. Bulletin of the American Meteorological Society, 94(9), 1329–1337.  https://doi.org/10.1175/BAMS-D-12-00142.1.CrossRefGoogle Scholar
  108. Qian, W., Quan, L., & Shi, S. (2002). Variations of the dust storms in China and its climatic control. Journal of Climate, 15, 1216–1229.CrossRefGoogle Scholar
  109. Qiu, G. Y., Lee, I.-B., Shimizu, H., Gao, Y., & Ding, G. (2004). Principles of sand dune fixation with straw checkerboard technology and its effect on the environment. Journal of Arid Environments, 56, 449–464.CrossRefGoogle Scholar
  110. Rahav, E., Paytan, A., Chien, C.-T., Ovadia, G., Katz, T., & Herut, B. (2016). The impact of atmospheric dry deposition associated microbes on southeastern Mediterranean Sea surface water following an intense dust storm. Frontiers in Marine Science, 3, 127.  https://doi.org/10.3389/fmars.2016.00127.CrossRefGoogle Scholar
  111. Rajeev, L., Nunes da Rocha, U., Klitgord, N., Luning, E. G., Fortney, J., Axen, S. D., et al. (2013). Dynamic cyanobacterial response to hydration and dehydration in a desert biological soil crust. International Society for Microbial Ecology Journal, 7, 2178–2191.Google Scholar
  112. Rangarajan, C., & Eapen, C. D. (2012). Estimates of interhemispheric transport of radioactive debris by the east African low level jet stream. Journal of Geophysical Research: Oceans, 1978–2012(86), 12153–12154.Google Scholar
  113. Read, C. F., Duncan, D. H., Vesk, P. A., & Elith, J. (2011). Surprisingly fast recovery of biological soil crusts following livestock removal in southern Australia. Journal of Vegetation Science, 42(5), 905–916.  https://doi.org/10.1111/j.1654-1103.2011.01296.x.CrossRefGoogle Scholar
  114. Rosselli, R., Fiamma, M., Deligios, M., Pintus, G., Pellizzaro, G., Canu, A., et al. (2015). Microbial immigration across the Mediterranean via airborne dust. Scientific Reports, 5, 16306.CrossRefGoogle Scholar
  115. Rousseau, D.-D., Antoine, P., Kunesch, S., Hatté, C., Rossignol, J., Packman, S., et al. (2007). Evidence of cyclic dust deposition in the US Great Plains during the last deglaciation from the high-resolution analysis of the Peoria Loess in the Eustis sequence (Nebraska, USA). Earth and Planetary Science Letters, 262, 159–174.CrossRefGoogle Scholar
  116. Sahu, N., & Tangutur, A. D. (2015). Airborne algae: Overview of the current status and its implications on the environment. Aerobiology, 31, 89–97.CrossRefGoogle Scholar
  117. Samad, L. K., & Adhikary, S. P. (2008). Diversity of micro-algae and cyanobacteria on building facades and monuments in India. Algae, 23(2), 91–114.CrossRefGoogle Scholar
  118. Schlichting, H. E. (1969). The importance of airborne algae and protozoa. Journal of the Air Pollution Control Association, 19, 946–951.CrossRefGoogle Scholar
  119. Schwiesow, R. L., & Cupp, R. E. (1976). Remote Doppler velocity measurements of atmospheric dust devil vortices. Applied Optics, 15, 1–2.CrossRefGoogle Scholar
  120. Sethi, S. K., Samad, L. K., & Adhikary, S. P. (2012). Cyanobacteria and micro-algae in biological crusts on soil and sub-aerial habitats of eastern and north eastern region of India. Phycos, 42, 1–9.Google Scholar
  121. Sharma, N. K., Rai, A. K., & Singh, S. (2006a). Meteorological factors affecting the diversity of airborne algae in an urban atmosphere. Ecography, 29, 766–772.CrossRefGoogle Scholar
  122. Sharma, N. K., Rai, A. K., Singh, S., & Brown, R. M. (2007). Airborne algae: Their present status and relevance. Journal of Phycology, 43, 615–627.CrossRefGoogle Scholar
  123. Sharma, N. K., Singh, S., & Rai, A. K. (2006b). Diversity and seasonal variation of viable algal particles in the atmosphere of a subtropical city in India. Environmental Research, 102, 252–259.CrossRefGoogle Scholar
  124. Sissakian, V. K., Al-Asari, N., & Knutsson, S. (2013). Sand and dust storm events in Iraq. Natural Science, 5, 1084–1094.CrossRefGoogle Scholar
  125. Søchting, U., & Olech, M. (1995). The lichen genus Caloplaca in polar regions. Lichenologist, 27(6), 463–471.Google Scholar
  126. Spröte, R., Fischer, T., Veste, M., Raab, T., Wiehe, W., Lange, P., et al. (2010). Biological topsoil crusts at early successional stages on Quaternary substrates dumped by mining in Brandenburg, NE Germany. Géomorphologie, 16(4), 359–370.CrossRefGoogle Scholar
  127. St. Clair, L. L., Johansen, J. R., & Webb, B. L. (1986). Rapid stabilization of fire-disturbed sites using a soil crust slurry: Inoculation studies. Reclamation and Rehabilitation Research, 4, 261–269.Google Scholar
  128. Stark, L. R. (2003). Mosses in the desert. Fremontia, 31, 26–33.Google Scholar
  129. Swarf, P. K., Oehlert, A. M., Mackenzie, G. J., Eberli, G. P., & Reijmer, J. J. G. (2014). The fertilization of the Bahamas by Saharan dust: A trigger for carbonate precipitation? Geology, 42, 671–674.CrossRefGoogle Scholar
  130. Takeuchi, N. (2013). Seasonal and altitudinal variations in snow algal communities on an Alaskan glacier (Gulkana glacier in the Alaska range). Environmental Research Letters, 8(3), 035002.CrossRefGoogle Scholar
  131. Tesson, S. V., Skjøth, C. A., Šanti-Temkiv, T., & Löndahl, J. (2016). Airborne microalgae: Insights, opportunities, and challenges. Applied and Environmental Microbiology, 82, 1978–1991.CrossRefGoogle Scholar
  132. Tomaselli, L., Lamenti, G., Bosco, M., & Tiano, P. (2000). Biodiversity of photosynthetic micro-organisms dwelling on stone monuments. International Biodeterioration and Biodegradation, 46, 251–258.CrossRefGoogle Scholar
  133. Tormo, R., Recio, D., Silva, I., & Muñoz, A. F. (2001). A quantitative investigation of airborne algae and lichen soredia obtained from pollen traps in south-west Spain. European Journal of Phycology, 36, 385–390.CrossRefGoogle Scholar
  134. Uno, I., Eguchi, K., Yumimoto, K., Takemura, T., Shimizu, A., Uematsu, M., et al. (2009). Asian dust transported one full circuit around the globe. Nature Geoscience, 2, 557–560.CrossRefGoogle Scholar
  135. Verma, P. K., Kumar, N., Kaushik, P. K., & Yadav, A. (2014). Bryophyte invasion on famous archaeological site of Ahom Dynasty ‘Talatal Ghar’ of Sibsagar, Assam (India). Proceedings of the National Academy of Sciences, India Section B, Biological Sciences, 84(1), 71–74.CrossRefGoogle Scholar
  136. Vonnahme, T. R., Devetter, M., Źárský, J. D., Šabacká, M., & Elster, J. (2016). Controls on microalgal community structures in cryoconite holes upon high-Arctic glaciers, Svalbard. Biogeosciences, 13, 659–674.CrossRefGoogle Scholar
  137. Wang, X., Dong, Z., Zhang, J., & Liu, L. (2004). Modern dust storms in China: An overview. Journal of Arid Environments, 58, 559–574.CrossRefGoogle Scholar
  138. Warren, S. D. (1995). Ecological role of microphytic soil crusts in arid environments. In D. Allsopp, R. R. Caldwell, & D. L. Hawksworth (Eds.), Microbial diversity and function (pp. 199–209). Wellingford: CAB International.Google Scholar
  139. Warren, S. D. (2014). Role of biological soil crusts in desert hydrology and geomorphology: Implications for military training operations. Reviews in Engineering Geology, 22, 177–186.CrossRefGoogle Scholar
  140. Warren, S. D., & Eldridge, D. J. (2001). Biological soil crusts and livestock in arid ecosystems: Are they compatible? In J. Belnap & O. L. Lange (Eds.), Biological soil crusts: Structure, function and management (pp. 401–415). Berlin: Springer.CrossRefGoogle Scholar
  141. Webb, R. H., Steiger, J. W., & Newman, E. B. (1988) The response of vegetation to disturbance in Death Valley National Monument, California. US Geological Survey Bulletin 1793Google Scholar
  142. Weber, B., Bowker, M., Zhang, Y., & Belnap, J. (2016a). Natural recovery of biological soil crusts after disturbance. In B. Weber, B. Büdel, & J. Belnap (Eds.), Biological soil crusts: An organizing principle in drylands (pp. 479–498). Cham: Springer.CrossRefGoogle Scholar
  143. Weber, B., Büdel, B., & Belnap, J. (Eds.). (2016b). Biological soil crusts: An organizing principal in drylands. Cham: Springer.Google Scholar
  144. Wilshire, H. G. (1983). The impact of vehicles on desert stabilizers. In R. H. Webb & H. G. Wilshire (Eds.), Environmental effects of off-road vehicles (pp. 31–50). New York: Springer.CrossRefGoogle Scholar
  145. Womack, A. M., Bohannan, B. J. M., & Green, J. L. (2010). Biodiversity and biogeography of the atmosphere. Transactions of the Royal Society, 365, 3645–3653.CrossRefGoogle Scholar
  146. Xu, S., Yin, C., He, M., & Wang, Y. (2008). A technology for rapid reconstruction of moss-dominated soil crusts. Environmental Engineering Science, 25, 1129–1137.CrossRefGoogle Scholar
  147. Zhang, J., Zhang, C., Ma, X., Zhou, N., Wang, H., & Rissler, P. S. (2014). Dust fall and biological soil crust distribution as indicators of the aeolian environment in China’s Shapatou railway protective system. CATENA, 114, 107–118.CrossRefGoogle Scholar
  148. Zhang, T.-H., Zhao, H.-L., Li, S.-G., Li, L.-R., Shirato, Y., & Ohkuro, T. (2004). A comparison of different measures for stabilizing moving sand dunes in the Horqin Sandy Land of Inner Mongolia, China. Journal of Arid Environments, 58, 203–214.CrossRefGoogle Scholar
  149. Zhao, Y., Bowker, M. A., Zhang, Y., & Zaady, E. (2016). Enhanced recovery of biological soil crusts after disturbance. In B. Weber, B. Büdel, & J. Belnap (Eds.), Biological soil crusts: An organizing principle in drylands (pp. 499–523). Cham: Springer.CrossRefGoogle Scholar

Copyright information

© This is a U.S. government work and its text is not subject to copyright protection in the United States; however, its text may be subject to foreign copyright protection 2018

Authors and Affiliations

  • Steven D. Warren
    • 1
  • Larry L. St. Clair
    • 2
  • Steven D. Leavitt
    • 2
  1. 1.US Forest ServiceRocky Mountain Research StationProvoUSA
  2. 2.Department of Biology and Monte L. Bean Life Science MuseumBrigham Young UniversityProvoUSA

Personalised recommendations