Advertisement

Aerobiologia

pp 1–12 | Cite as

nCup a 1 as a marker of allergy to cypress pollen

  • P. Carretero Anibarro
  • I. Fernández de Alba
  • A. Armentia Medina
  • R. Pérez Gimenez
  • L. Manzanedo Ortega
  • P. Alloza Perez
  • C. Reinares Ten
  • J. G. Blanco Carmona
  • C. Brígido Paredes
  • P. Juste Picon
Original Paper
  • 6 Downloads

Abstract

The increase in polysensitisations among allergic patients has led us to search for suitable means of diagnosis for identifying true sensitisation, and distinguishing true sensitisation from cross-reactivity. Cross-reactive carbohydrate determinants (CCDs) present in glycoproteins from cypress pollen extracts have been linked with such cross-reactivity, particularly in in vitro assays. The application of component-resolved diagnosis using recombinant allergens makes it possible to identify true allergens. The problem arises when the allergen available for the usual diagnostic methods, which are used as a reference for the diagnosis of allergy to cypress pollen nCup a 1, is a native allergen. The aim of the study was to validate the native allergen nCup a as a marker of true sensitisation to cypress pollen. The sera of 96 subjects with a proven allergy to cypress pollen were analysed. We then quantified IgE specific to Cupressus arizonica and to nCup a 1 and also analysed the CCDs in subjects sensitised to several tree pollen allergens, presenting with MUXF3-specific IgE. Results revealed that there is a statistically significant correlation between conventional diagnostic techniques used to determine allergy to cypress pollen (SPT and IgE Cupressus arizonica) and sensitisation to nCup a 1. CCD quantification in subjects sensitised to several tree pollen antigens showed that these did not interfere with our results. We validated the native Cupressus arizonica allergen, nCup a 1, as a marker of allergy to cypress pollen in our population.

Keywords

Cypress pollen allergy Cupressus arizonica Pectate lyase Component-resolved diagnosis Cup a 1 

Abbreviations

CCDs

Cross-reactive carbohydrate determinants

CRD

Component-resolved diagnosis

SPT

Skin prick test

Notes

Acknowledgements

The authors wish to thank Fernando De la Torre from ALK laboratory for his collaboration.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Aceituno, E., Del Pozo, V., Minguez, A., Arrieta, I., Cortegano, I., Cardaba, B., et al. (2000). Molecular cloning of major allergen from Cupressus arizonica pollen: Cup a 1. Clinical and Experimental Allergy, 30(12), 1750–1758.CrossRefGoogle Scholar
  2. Afferni, C., Iacovacci, P., Barletta, B., Di Felice, G., Tinghino, R., Mari, A., et al. (1999). Role of carbohydrate moieties in IgE binding to allergenic components of Cupressus arizonica pollen extract. Clinical and Experimental Allergy, 29(8), 1087–1094.CrossRefGoogle Scholar
  3. Alisi, C., Afferni, C., Iacovacci, P., Barletta, B., Tinghino, R., Butteroni, C., et al. (2001). Rapid isolation, characterization, andglycan analysis of cup a 1, the major allergen of Arizona cypress(Cupressus arizonica) pollen. Allergy, 56(10), 978–984.Google Scholar
  4. Arilla, M. C., Ibarrola, I., Martinez, A., & Asturias, J. A. (2004). Quantification assay for the major allergen of Cupressus sempervirens pollen, cup s 1, by sandwich. ELISA AllergolImmunopathol (Madr), 32(6), 319–325.CrossRefGoogle Scholar
  5. Asam, C., Hofer, H., Wolf, M., & AglasL, Wallner M. (2015). Tree pollen allergens-an update from a molecular perspective. Allergy, 70(10), 1201–1211.  https://doi.org/10.1111/all.12696.CrossRefGoogle Scholar
  6. Barber, D., Díaz-Perales, A., Villalba, M., & Chivato, T. (2015). Challenges for allergy diagnosis in regions with complex pollen exposures. Current Allergy Asthma Report, 15(2), 496.  https://doi.org/10.1007/s11882-014-0496-7.CrossRefGoogle Scholar
  7. Boi, M., & Llorens, L. (2013). Annual pollen spectrum in the air of Palma de Mallorca (Balearic Islands, Spain). Aerobiologia, 29(3), 385–397.CrossRefGoogle Scholar
  8. Bousquet, J., Heinzerling, L., Bachert, C., Papadopoulos, N. G., Bousquet, P. J., Burney, P. G., et al. (2012). Practical guide to skin prick tests in allergy to aeroallergens. Allergy, 67, 18–24.  https://doi.org/10.1111/j.1398-9995.2011.02728.x.CrossRefGoogle Scholar
  9. Canonica, G. W., Ansotegui, I. J., Pawankar, R., Schmid-Grendelmeier, P., et al. (2013). A WAO—ARIA—GA2LEN consensus document on molecular-based allergy diagnostics. World Allergy Organization, 6, 1–17.  https://doi.org/10.1186/1939-4551-6-17.CrossRefGoogle Scholar
  10. Charpin, D., Pichot, C., Belmonte, J., Sutra, J. P., Zidkova, J., Chanez, P., et al. (2017). Cypress Pollinosis: From tree to clinic. Clinical Reviews in Allergy and Immunology.  https://doi.org/10.1007/s12016-017-8602-y.Google Scholar
  11. Docampo, S., Recio, M., Trigo, M. M., Melgar, M., & Cabezudo, B. (2007). Risk of pollen allergy in Nerja (southern Spain): A pollen calendar. Aerobiologia, 23(3), 189–199.CrossRefGoogle Scholar
  12. Domínguez-Ortega, J., López-Matas, M. Á., Alonso, M. D., Feliú, A., Ruiz-Hornillos, J., González, E., et al. (2016). Prevalence of allergic sensitization to conifer pollen in a high cypress exposure area. Allergy and Rhinology (Providence), 7(4), 200–206.  https://doi.org/10.2500/ar.2016.7.0183.CrossRefGoogle Scholar
  13. Fernández-González, D., González-Parrado, Z., Vega-Maray, A. M., Valencia-Barrera, R. M., Camazón-Izquierdo, B., De Nuntiis, P., et al. (2010). Platanus pollen allergen, Pla a 1: Quantification in the atmosphere and influence on a sensitizing population. Clinical and Experimental Allergy, 40(11), 1701–1708.  https://doi.org/10.1111/j.1365-2222.2010.03595.x.CrossRefGoogle Scholar
  14. González Parrado, Z., Fernández-González, D., Camazón, B., Valencia-Barrera, R. M., Vega-Maray, A. M., Asturias, J. A., et al. (2014). Molecular aerobiology—Plantago allergen Pla l 1 in the atmosphere. Annals of Agricultural and Environmental Medicine, 21(2), 383–390.CrossRefGoogle Scholar
  15. Hidalgo, P. J., Galan, C., & Dominguez, E. (2003). Male phenology of three species of Cupressus: Correlation with airborne pollen. Trees, 17, 336–344.Google Scholar
  16. Iacovacci, P., Afferni, C., Butteroni, C., Pironi, L., Puggioni, E. M., Orlandi, A., et al. (2002). Comparison between the native glycosylated and the recombinant Cup a1 allergen: role of carbohydrates in the histamine release from basophils. Clinical and Experimental Allergy, 32(11), 1620–1627.CrossRefGoogle Scholar
  17. Matricardi, P. M. (2016). EAACI molecular allergology user’s guide. Pediatric Allergy and Immunology, 27(23), 1–250.  https://doi.org/10.1111/pai.12563.CrossRefGoogle Scholar
  18. Mohanty, R. P., Buchheim, M. A., Anderson, J., & Levetin, E. (2017). Molecular analysis confirms the long-distance transport of Juniperus ashei pollen. PLoS One, 12(3), e0173465.  https://doi.org/10.1371/journal.pone.0173465.CrossRefGoogle Scholar
  19. Okuda, M. (2003). Epidemiology of Japanese cedar pollinosis throughout Japan. Annals of Allergy, Asthma & Immunology, 91(3), 288–296.CrossRefGoogle Scholar
  20. Perez-Badia, R., Rapp, A., Vaquero, C., & Fernandez-Gonzalez, F. (2011). Aerobiological study in east-central Iberian Peninsula: Pollen diversity and dynamics for major taxa. Annals of Agricultural and Environmental Medicine, 18(1), 99–111.Google Scholar
  21. Pichler, U., Hauser, M., Wolf, M., Bernardi, M. L., Gadermaier, G., Weiss, R., et al. (2015). Pectate lyase pollen allergens: Sensitization profiles and cross-reactivity pattern. PLoS ONE, 71(11), 1540–1551.  https://doi.org/10.1111/all.12939.Google Scholar
  22. Roberts, G., Ollert, M., Aalberse, R., Austin, M., Custovic, A., Dunn Galvin, A., et al. (2016). A new framework for the interpretation of IgE sensitization tests. Allergy, 71(11), 1540–1551.  https://doi.org/10.1111/all.12939.CrossRefGoogle Scholar
  23. Scala, E., Alessandri, C., Bernardi, M. L., Ferrara, R., Palazzo, P., Pomponi, D., et al. (2010). Cross-sectional survey on immunoglobulin E reactivity in 23 077 subjects using an allergenic molecule-based microarray detection system. Clinical and Experimental Allergy, 40(6), 911–921.  https://doi.org/10.1111/j.1365-2222.2010.03470.x.CrossRefGoogle Scholar
  24. Shahali, Y., Sutra, J. P., Hilger, C., Swiontek, K., Haddad, I., Vinh, J., et al. (2017). Identification of a polygalacturonase (Cup s 2) as the major CCD-bearing allergen in Cupressus sempervirens pollen. Allergy, 72(11), 1806–1810.  https://doi.org/10.1111/all.13191.CrossRefGoogle Scholar
  25. Sousa, R., Osório, H., Duque, L., Ribeiro, H., Cruz, A., & Abreu, I. (2014). Identification of Plantago lanceolata pollen allergens using an immunoproteomic approach. J Investig Allergol Clin Immunol, 24(3), 177–183.Google Scholar
  26. Sposato, B., Liccardi, G., RussoM, Folletti I., Siracusa, A., Ventura, M. T., Rolla, G., et al. (2014). Cypress pollen: An unexpected major sensitizing agent in differentregions of Italy. Journal of Investigational Allergology and Clinical Immunology, 24(1), 23–28.Google Scholar
  27. Stiefel, G., & Roberts, G. (2012). How to use serum specific IgE measurements in diagnosing and monitoring food allergy. Archives of Disease in Childhood-Education and Practice, 97, 29–36.CrossRefGoogle Scholar
  28. Subiza J. Pollen counts as a tool for clinical research. In: Basomba A and Sastre J eds. (1995) Postgraduate courses and practical workshops; Syllabus. Valencia ECACI-95, 305–311.Google Scholar
  29. Subiza, J., Jerez, M., Jiménez, J. A., Narganes, M. J., Cabrera, M., Valera, S., et al. (1995). Allergenic pollen and pollinosis in Madrid. Journal of Allergy and Clinical Immunology, 96, 15–23.CrossRefGoogle Scholar
  30. Tripodi, S., Frediani, T., Lucarelli, S., Macrì, F., Pingitore, G., Di RienzoBusinco, A., et al. (2012). Molecular profiles of IgE to Phleumpratense in children with grass pollen allergy: Implications for specific immunotherapy. Journal of Allergy and Clinical Immunology, 129(3), 834–839.  https://doi.org/10.1016/j.jaci.2011.10.045.CrossRefGoogle Scholar
  31. Valenta, R., Twaroch, T., & Swoboda, I. (2007). Component-resolved diagnosis to optimize allergen-specific immunotherapy in the Mediterranean area. J Investig Allergol Clin Immunol, 17(Suppl 1), 36–40.Google Scholar
  32. Yoshida, K., Adachi, Y., Akashi, M., Itazawa, T., Murakami, Y., Odajima, H., et al. (2013). Cedar and cypress pollen counts are associated with the prevalence of allergic diseases in Japanese school children. Allergy, 68(6), 757–763.  https://doi.org/10.1111/all.12164.CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • P. Carretero Anibarro
    • 1
  • I. Fernández de Alba
    • 1
  • A. Armentia Medina
    • 2
  • R. Pérez Gimenez
    • 1
  • L. Manzanedo Ortega
    • 1
  • P. Alloza Perez
    • 1
  • C. Reinares Ten
    • 1
  • J. G. Blanco Carmona
    • 1
  • C. Brígido Paredes
    • 1
  • P. Juste Picon
    • 1
  1. 1.Allergy DepartmentHospital Universitario de BurgosBurgosSpain
  2. 2.Allergy DepartmentHospital Universitario Río HortegaValladolidSpain

Personalised recommendations