, Volume 34, Issue 4, pp 557–572 | Cite as

Aeropalynological spectrum of Hatay, Turkey, the eastern coast of the Mediterranean Sea

  • Aycan TosunogluEmail author
  • Ahmet Ilcim
  • Hulusi Malyer
  • Adem Bicakci
Original Paper


An aeropalynological study during the years 2014–2015 was performed in Hatay, which is a unique sociocultural and phytogeographical area located on the border of Turkey and Syria on the eastern coast of the Mediterranean. The sampling was performed by a Hirst-type volumetric sampler (Lanzoni VPPS 2000), and pollen grains of 54 taxa were identified, of which 83.21% of the annual sum belonged to woody taxa. The highest pollen concentration was recorded in February, of which a large amount came from the Cupressaceae/Taxaceae families. The diversity of the pollen reflected the vegetation of the area and plantations of the city center, but pollen grains from Euro-Siberian elements specific to Mount Amanos could not be recorded. Pollen types found at more than 3% of the annual pollen index and considered dominant pollen types were as follows: Cupressaceae/Taxaceae (50.86%), Olea europaea (12.67%), Moraceae (7.20%), Poaceae (5.99%), Quercus (5.35%), Urticaceae (3.79%) and Pinus (3.70%); almost all dominant pollen types in the city atmosphere were previously stated to be allergic. The main pollen season starting dates of common pollen types found were one or two weeks earlier than those of the surroundings. Many statistically significant correlations were found between daily pollen concentrations and daily meteorological parameters, e.g., Cupressaceae/Taxaceae Poaceae and Urticaceae pollen correlated negatively with mean temperature in both years, and in the hindermost two families daily pollen amounts significantly correlated with wind speed in the second year. Daily Olea europaea pollen concentration showed a significant negative correlation with the amount of total daily rainfall in the second year.


Aerobiology Pollen calendar Mediterranean Anatolia 



This work was completely funded by a Grant of the corresponding author from the Technical and Research Council of Turkey (TUBITAK TBAG-212T135).


  1. Abu-Dieyeh, M. H., & Ratrout, Y. S. (2012). Seasonal variation of airborne pollen grains in the atmosphere of Zarqa area, Jordan. Aerobiologia, 28, 527–539.CrossRefGoogle Scholar
  2. Akman, Y. (1973). Apercu preliminaire Sur Les conditions Phytosocioloqiques de la Chaine de L’Amanous dans la Region du Hatay (I-II-III). Com de la Fac-Des Sicid’Ank. Serie C, Tome 17.Google Scholar
  3. Altintas, D. U., Karakoc, D. G., Yilmaz, M., Pinar, M., Kendirli, S. G., & Cakan, H. (2004). Relationship between pollen counts and weather variables in east-mediterranean coast of Turkey. Clinical and Developmental Immunology, 11(1), 87–96.CrossRefGoogle Scholar
  4. Andersen, T. B. (1991). A model to predict the beginning of the pollen season. Grana, 30, 269–275.CrossRefGoogle Scholar
  5. Ballero, M., & Maxia, A. (2003). Pollen spectrum variations in the atmosphere of Cagliari, Italy. Aerobiologia, 19, 251–259.CrossRefGoogle Scholar
  6. Benito Rica, V., & Soto Torres, J. (2001). Pollinosis and pollen aerobiology in the atmosphere of Santander. Allergologíae Immunolología Clínica, 16, 84–90.Google Scholar
  7. Bicakci, A. (2006). Analysis of airborne pollen fall in Sakarya, Turkey. Biologia, 61(4), 457–461.CrossRefGoogle Scholar
  8. Bicakci, A., Tosunoglu, A., Altunoglu, M. K., Celenk, S., Erkan, P., Canitez, Y., et al. (2010). Allergenic Cupressaceae (Cypress family) pollen concentrations in Turkey. Asthma Allergy Immunology, 8, 1–12.Google Scholar
  9. Bicakci, A., Tosunoglu, A., Altunoglu, M. K., Saatcioglu, G., Keser, A. M., & Ozgokce, F. (2017). An aeropalynological survey in the city of Van, a high altitudinal region, East Anatolia-Turkey. Aerobiologia, 33, 93–108.CrossRefGoogle Scholar
  10. Bilisik, A., Yenigun, A., Bicakci, A., Eliacik, K., Canitez, Y., Malyer, H., et al. (2008). An observation study of airborne pollen fall in Didim (S-W Turkey); in years 2004–2005. Aerobiologia, 24, 61–66.CrossRefGoogle Scholar
  11. Charpin, J., Surinyach, R., & Frankland, A. W. (1974). Atlas of European allergenic pollens. Paris: Sandos Editions.Google Scholar
  12. Corden, J. M., & Millington, W. M. (1991). A study of Gramineae and Urticaceae pollen in the Derby area. Aerobiology, 7, 100–106.CrossRefGoogle Scholar
  13. D’Amato, G. (2001). Allergenic pollen. In G. D’Amato, S. Bonini, J. Bousquet, S. Durham, & T. A. E. Platts-Mills (Eds.), Pollinosis 2000. Global approach (pp. 69–76). Naples: JGC Editions.Google Scholar
  14. D’Amato, G., Cecchi, L., Bonini, S., Nunes, C., Annesi-Maesano, I., Behrendt, H., et al. (2007). Allergenic pollen and pollen allergy in Europe. Allergy, 62, 976–990.CrossRefGoogle Scholar
  15. D’Amato, G., Cecchi, L., D’Amato, M., & Liccardi, G. (2010). Urban air pollution and climate change as environmental risk factors of respiratory allergy, an update. Journal of Investigational Allergology and Clinical Immunology, 20, 95–102.Google Scholar
  16. D’Amato, G., Spieksma, F. T. M., & Bonini, S. (1991). Allergenic pollen and pollinosis in Europe. Oxford: Blackwell Scientific Publications.Google Scholar
  17. Davis, P. H. (1971). Distribution patterns in Anatolia with particular reference to endemism. In P. H. Davis, et al. (Eds.), Plant life of south west Asia (pp. 15–27). Edinburgh: Botanical Society of Edinburgh.Google Scholar
  18. Díaz de La Guardia, C., Alba, F., Girón, F., & Sabariego, S. (1998). An aerobiological study of Urticaceae pollen in the city of Granada (S. Spain): Correlation with meteorological parameters. Grana, 37(5), 298–304.CrossRefGoogle Scholar
  19. Docampo, S., Recio, M., Trigo, M. M., Melgar, M., & Cabezudo, B. (2007). Risk of pollen allergy in Nerja (southern Spain): a pollen calendar. Aerobiologia, 23, 189–199.CrossRefGoogle Scholar
  20. Ekim, T., & Güner, A. (1986). The anatolian diagonal: Fact or fiction? Proceedings of the royal society of Edinburgh, 89-B, 69–77.Google Scholar
  21. European Committee for Standardization. (2015). Technical Specification CEN/TS 16868:2015. Ambient air. Sampling and analysis of airborne pollen grains and fungal spores for allergy networks. Volumetric Hirst method. Retrieved from
  22. Fornaciari, M., Bricchi, E., Greco, F., Fascini, D., Giannoni, C., Frenguelli, G., et al. (1992). Daily variations of Urticaceae pollen count and influence of meteoclimatic parameters in East Perugia during 1989. Aerobiology, 8, 407–413.CrossRefGoogle Scholar
  23. Galán, C., Cariñanos, P., Alcázar, P. & Dominguez-Vilches, E. (2007). Spanish aerobiology network (REA) management and quality manual. Servicio de Publicaciones Universidad de Córdoba. ISBN 978-84-690-6353-8.Google Scholar
  24. García-Ortega, P., Martínez, J., Martínez, A., Palacios, R., Belmonte, J., & Richart, C. (1992). Mercurialis annua pollen: a new source of allergic sensitization and respiratory disease. Journal of Allergy Clinical Immunology, 89, 987–993.CrossRefGoogle Scholar
  25. Giner, M. M., Garcia, J. S. C., & Camacho, C. N. (2002). Seasonal fluctuations of the airborne pollen spectrum in Murcia (SE Spain). Aerobiologia, 18, 141–151.CrossRefGoogle Scholar
  26. Gioulekas, D., Balafoutis, C., Damialis, A., Papakosta, D., Gioulekas, G., & Patakas, D. (2004). Fifteen-year records of airborne allergenic pollen and meteorological parameters in Thessaloniki, Greece. International Journal of Biometeorology, 48, 128–136.CrossRefGoogle Scholar
  27. Gonzalez-Minero, F. J., & Candau, P. (1996). Prediction of the beginning of the olive full pollen season in South-West Spain. Aerobiologia, 12, 91–96.CrossRefGoogle Scholar
  28. Gucel, S., Guvensen, A., Ozturk, M., & Celik, A. (2013). Analysis of airborne pollen fall in Nicosia (Cyprus). Environmental Monitoring and Assessment, 185, 157–169.CrossRefGoogle Scholar
  29. Hidalgo, P. J., Galán, C., & Domínguez, E. (2003). Male phenology of three species of Cupressus: Correlation with airborne pollen. Trees, 17, 336–344.Google Scholar
  30. Keynan, N., Waisel, Y., Shomer-Ilan, A., Goren, A., & Brener, S. (1991). Annual variations of airborne pollen in the Coastal Plain of Israel. Grana, 30, 477–480.CrossRefGoogle Scholar
  31. Keynan, N., Waisel, Y., Shomer-Ilan, A., & Tamir, R. (1989). Forecasting pollen pollution: Correlation with floral development. Annals of Allergy, 63, 417–420.Google Scholar
  32. Kovats, R. S., Menne, B., Ahern, M. J., & Patz, J. A. (2003). National assessments of health impacts of climate change: A review. In A. J. McMichael, D. H. Campbell-Lendrum, C. F. Corvalán, K. L. Ebi, A. K. Githeko, J. D. Scheraga, & A. Woodward (Eds.), Climate change and human health: Risks and responses, chap 9 (pp. 59–62). Geneva: World Health Organization.Google Scholar
  33. Mandal, J., Chakraborty, P., Roy, I., Chatterjee, S., & Gupta-Bhattacharya, S. (2008). Prevalence of allergenic pollen grains in the aerosol of the city of Calcutta, India: a two year study. Aerobiologia, 24, 151–164.CrossRefGoogle Scholar
  34. Panzani, R. C., Falagiani, P., Chiapella, M., & Augeri, G. (1993). Respiratory allergy to the pollen of Mercurialis annua (Euphorbiaceae). Annals of Allergy, 70, 249–254.Google Scholar
  35. Papa, G., Romano, A., Quaratino, D., Di Fonso, M., Viola, M., Artesani, M. C., et al. (2001). Prevalence of sensitization to Cupressus sempervirens: a 4 year retrospective study. The Science of the Total Enviroment, 270, 83–87.CrossRefGoogle Scholar
  36. Peternel, R., Čulig, J., Mitić, B., Vukušić, I., & Sŏstar, Z. (2003). Analysis of airborne pollen concentrations in Zagreb, Croatia, 2002. Annals of Agricultural and Environmental Medicine, 10, 107–112.Google Scholar
  37. Puljak, T., Mamić, M., Mitić, B., Hrga, I., & Hruševar, D. (2016). First aerobiological study in Mediterranean part of Croatia (Dalmatia): pollen spectrum and seasonal dynamics in the air of Split. Aerobiologia, 32, 709–723.CrossRefGoogle Scholar
  38. Ribeiro, H., & Abreu, I. (2014). A 10-year survey of allergenic airborne pollen in the city of Porto (Portugal). 2014. Aerobiologia, 30, 333–344.CrossRefGoogle Scholar
  39. Ribeiro, H., Cunha, M., & Abreu, I. (2003). Airborne pollen concentration in the region of Braga, Portugal, and its relationship with meteorological parameters. Aerobiologia, 19, 21–27.CrossRefGoogle Scholar
  40. Rodríguez-Rajo, F. J., Jato, V., & Aira, M. J. (2003). Pollen content in the atmosphere of Lugo (NW Spain) with reference to meteorological factors (1999–2001). Aerobiologia, 19, 213–225.CrossRefGoogle Scholar
  41. Sabariego, S., Cuesta, P., Fernández-González, F., & Pérez-Badia, R. (2012). Models for forecasting airborne Cupressaceae pollen levels in central Spain. International Journal of Biometeorology, 56, 253–258.CrossRefGoogle Scholar
  42. Ščevková, J., Dušička, J., Mičieta, K., & Somorčík, J. (2015). Diurnal variation in airborne pollen concentration of six allergenic tree taxa and its relationship with meteorological parameters. Aerobiologia, 31, 457–468.CrossRefGoogle Scholar
  43. Spieksma, F. T. M. (1991). Regional European pollen calendars. In G. D’Amato, F. T. M. Spieksma, & S. Bonini (Eds.), Allergenic Pollen and Pollinosis in Europe (pp. 49–65). Oxford: Blackwell Scientific Publications.Google Scholar
  44. Tosunoglu, A., Altunoglu, M. K., Bicakci, A., Kilic, O., Gonca, T., Yilmazer, I., et al. (2015). Atmospheric pollen concentrations in Antalya, South Turkey. Aerobiologia, 31, 99–109.CrossRefGoogle Scholar
  45. Tosunoglu, A., & Bicakci, A. (2015). Seasonal and intradiurnal variation of airborne pollen concentrations in Bodrum, SW Turkey. Environmental Monitoring and Assessment, 187(4), 167.CrossRefGoogle Scholar
  46. Tosunoglu, A. & Bicakci, A. (2016). Winter pollination of Betula in South Anatolia—Is it fact or fiction? In 6th European Symposium on Aerobiology (Vol. 69). Lyon, France, Abstract Book.Google Scholar
  47. Tosunoglu, A., Bicakci, A., Malyer, H., & Sapan, N. (2009). Airborne pollen fall in Koycegiz specially protected area (SW Turkey). Fresenius Environmental Bulletin, 18(10), 1860–1865.Google Scholar
  48. Türkmen, N., & Düzenli, A. (1998). The flora of dörtyol and erzin districts of Hatay Province in Turkey. Turkish Journal of Botany, 22, 121–141.Google Scholar
  49. Vallverdu, A., Garcia-Ortega, P., Martinez, J., Martinez, A., Esteban, M. I., de Molina, M., et al. (1997). Mercurialis annua: characterization of main allergens and cross-reactivity with other species. International Archives of Allergy and Immunology, 112, 356–364.CrossRefGoogle Scholar
  50. Vega-Maray, A. M., Valencia-Barrera, R., Fernandez-Gonzalez, D., & Fraile, R. (2003). Urticaceae pollen concentration in the atmosphere of North Western Spain. Annals of Agricultural and Environmental Medicine, 10(2), 249–255.Google Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Department of Biology, Science and Arts FacultyUludag UniversityNilufer, BursaTurkey
  2. 2.Department of Biology, Science and Arts FacultyMustafa Kemal UniversityHatayTurkey

Personalised recommendations