pp 1–15 | Cite as

Production and viability of Fraxinus pollen and its relationship with aerobiological data in the northwestern Iberian Peninsula

  • P. CastiñeirasEmail author
  • R. A. Vázquez-Ruiz
  • M. Fernández-González
  • F. J. Rodríguez-Rajo
  • M. J. Aira
Original Paper


The efficient evaluation of the potential pollen production of plants can provide preventive measures for the allergic population. For this purpose, a comparative study of three methods was carried out to evaluate pollen production (volumetric method, Neubauer chamber and Coulter cell counts), as well as other three methods to estimate pollen viability (fluorometry, colorimetry and germination) of Fraxinus. Our results indicate that the Neubauer chamber and the colorimetric response to two stains (acetic carmine with glycerol, ACG; 2, 3, 5-triphenyltetrazolium chloride, TTC) are the most adequate methods to determine, respectively, pollen production and quality, according to criteria of low cost, speed and reliability of the obtained data. Climate change is likely to influence vegetation, with consequent changes in growth and reproductive cycles, and therefore in pollen production. Considering the data obtained during the last two decades (1997–2017), we detected a statistically significant trend toward the increase in the airborne total annual pollen integral of Fraxinus pollen in NW Spain.


Fraxinus angustifolia Fraxinus excelsior Pollen Phenology Climate change Allergy 



The authors are grateful to the Institute of Agricultural Biodiversity and Rural Development and to the Institute of Orthopedics and Musculoskeletal Tissue Bank (University of Santiago de Compostela), for providing access to scientific instruments. This work was part of the activities of the Competitive Reference Group (2015/008, Xunta de Galicia) and the I.G. 1809-544 BIOAPLIC (Universidade de Santiago de Compostela).


  1. Albert, B., Morand-Prieur, M. E., Brachet, S., Gouyon, P. H., Frascaria-Lacoste, N., & Raquin, C. (2013). Sex expression and reproductive biology in a tree species, Fraxinus excelsior L. Biologies, 336, 479–485.CrossRefGoogle Scholar
  2. Ariano, R., Canonica, G. W., & Passalacqua, G. (2010). Possible role of climate changes in variations in pollen seasons and allergic sensitizations during 27 years. Annals of Allergy, Asthma & Immunology, 104, 215–222.CrossRefGoogle Scholar
  3. Asma, B. M. (2008). Determination of pollen viability, germination ratios and morphology of eight apricot genotypes. African Journal of Biotechnology, 7, 4269–4273.Google Scholar
  4. Astiz, V., & Hernández, L. F. (2014). Pollen production pattern in the capitulum of the cultivated sunflower (Helianthus annuus L.). Fyton, 83, 27–36.Google Scholar
  5. Barderas, R., Purohit, A., Rodríguez, R., Pauli, G., & Villalba, M. (2006). Isolation of the main allergen Fra e1 from ASH (Fraxinus excelsior) pollen: Comparison of the natural and recombinant forms. Annals of Allergy, Asthma & Immunoly, 96, 557–563.CrossRefGoogle Scholar
  6. Bayazit, S., Çalişkan, O., & Imrak, B. (2011). Comparison of pollen production and quality characteristics of cultivated and wild almond species. Chilean Journal of Agricultural Research, 71, 536–541.CrossRefGoogle Scholar
  7. Bayazit, S., Imrak, B., & Çalişkan, O. (2012). Determination of pollen production and quality attributes of some almond cultivars (Prunus dulcis) and selected wild almond (Amygdalus orientalis) genotypes. International Journal of Agriculture & Biology, 14, 425–429.Google Scholar
  8. Beck, P., Caudullo, G., Tinner, W., & de Rigo, D. (2016). Fraxinus excelsior in Europe: Distribution, habitat, usage and threats. In J. San-Miguel-Ayanz, D. de Rigo, G. Caudullo, T. Houston Durrant, & A. Mauri (Eds.), European atlas of forest tree species (pp. 98–99). Luxembourg: Publications Office of the European Union.Google Scholar
  9. Bonofiglio, T., Orlandi, F., Ruga, L., Romanok, B., & Fornaciari, M. (2013). Climate change impact on the olive pollen season in Mediterranean areas of Italy: Air quality in late spring from an allergenic point of view. Environmental Monitoring and Assessment, 185, 877–890.CrossRefGoogle Scholar
  10. Brewbaker, J. L., & Kwack, B. H. (1964). The calcium ion and substances influencing pollen growth. In H. F. Linskens (Ed.), Pollen physiology and fertilization. Amsterdam: Elsevier North-Holland.Google Scholar
  11. Cappellaro, T. (2010). Período de floração e viabilidade do pólen das cultivares de oliveira Arbequina e Koroneiki, em Bagé/RS. Pelotas: Universidade Federal de Pelotas. Facultade de Agronomia Eliseu Maciel. Dissertação (Mestrado)–Programa de Pós-Graduação em Agronomia.Google Scholar
  12. Caudullo, G., & Houston Durrant, T. (2016). Fraxinus angustifolia in Europe: Distribution, habitat, usage and threats. In J. San-Miguel-Ayanz, D. de Rigo, G. Caudullo, T. Houston Durrant, & A. Mauri (Eds.), European atlas of forest tree species (p. 97). Luxembourg: Publications Office of the European Union.Google Scholar
  13. Conner, P. J. (2011). Optimization of in vitro pecan pollen germination. HortScience, 46, 571–576.Google Scholar
  14. Costa Pinto, R. (2010). Caracterização de flores atípicas em Vitis vinifera L. cv. Aragonez. Porto: Faculdade de Ciências UP. Dissertaçao para obtención do grau de Mestre em Biologia.Google Scholar
  15. D’Amato, G., Pawankar, R., Vitale, C., Lanza, M., Molino, A., Stanziola, A., et al. (2016). Climate change and air pollution: Effects on respiratory allergy. Allergy, Asthma & Immunology Research, 8, 391–395.CrossRefGoogle Scholar
  16. Dafni, A. (1992). Pollination ecology: A practical approach. Oxford: Oxford University Press.Google Scholar
  17. Dalkiliç, Z., & Mestav, O. (2011). In vitro pollen quantity, viability and germination tests in quince. African Journal of Biotechnology, 10, 16516–16520.Google Scholar
  18. De Linares, C., Nieto-Lugilde, D., Alba, F., Díaz de la Guardia, C., & Trigo, M. M. (2007). Detection of airborne allergen (Ole e 1) in relation to Olea europaea pollen in Spain. Clinical and Experimental Allergy, 37, 125–132.CrossRefGoogle Scholar
  19. De Oliveira, L. F., Ruiz, C., De Oliveira, A. F., Pino, R., & Dias, E. (2016). Establishment of growth medium and quantification of pollen grains of olive cultivars in Brazil’s subtropical areas. Bragantia, 75, 26–32.CrossRefGoogle Scholar
  20. DeBlois, R. W., & Bean, C. P. (1970). Counting and sizing of submicron particles by the resistive pulse technique. Review of Scientific Instruments, 41, 909–916.CrossRefGoogle Scholar
  21. Doi, H., Takahashi, M., & Katano, I. (2010). Genetic diversity increases regional variation in phenological dates in response to climate change. Global Change Biology, 16, 373–379.CrossRefGoogle Scholar
  22. Fernández-González, M., González, E., Vara, A., & Piña, A. (2016). El polen de Fraxinus como fuente de contaminación ambiental. Revista De Salud Ambiental, 16, 52–61.Google Scholar
  23. Fernández-Rodríguez, S., Durán-Barroso, P., Silva-Palacios, I., Tormo-Molina, R., Maya-Manzano, J. M., & Gonzalo-Garijo, Á. (2016). Regional forecast model for the Olea pollen season in Extremadura (SW Spain). International Journal of Biometeorology, 60, 1509–1517.CrossRefGoogle Scholar
  24. Ferrara, G., Camposeo, S., Palascino, M., & Godini, A. (2007). Production of total and stainable pollen grains in Olea europea L. Grana, 46, 85–90.CrossRefGoogle Scholar
  25. Firmage, D. H., & Dafni, A. (2001). Field tests for pollen viability: A comparative approach. Acta Horticulturae. Scholar
  26. FRAXIGEN. (2005). Ash species in Europe: Biological characteristics and practical guidelines for sustainable use. UK: Oxford Forestry Institute, University of Oxford.Google Scholar
  27. French, E. R., & Hebert, T. T. (1982). Métodos de Investigación Fitopatológica. San José, Costa Rica: IICA.Google Scholar
  28. Fumanal, B., Chauvel, B., & Bretagnolle, F. (2007). Estimation of pollen and seed production of common ragweed in France. Annals of Agricultural and Environmental Medicine, 14, 233–236.Google Scholar
  29. Gaaliche, B., Majdoub, A., Trad, M., & Mars, M., (2013). Assessment of pollen viability, germination, and tube growth in eight tunisian caprifig (Ficus carica L.) cultivars. ISRN Agronomy.Google Scholar
  30. Galán, C., Alcázar, P., Oteros, J., García-Mozo, H., Aira, M. J., Belmonte, J., et al. (2016). Airborne pollen trends in the Iberian Peninsula. Science of the Total Environment, 550, 53–59.CrossRefGoogle Scholar
  31. Galán, C., Ariatti, A., Bonini, M., Clot, B., Crouzy, B., Dahl, A., et al. (2017). Recommended terminology for aerobiological studies. Aerobiologia, 33, 293–295.CrossRefGoogle Scholar
  32. Galán, C., Cariñanos, P., Alcázar, P., & Domínguez-Vilches, E. (2007). Spanish Aerobiology Network (REA): management and quality manual. Córdoba: Servicio de publicaciones de la Universidad de Córdoba.Google Scholar
  33. González-González, B. D., García-González, I., & Vázquez-Ruiz, R. A. (2013). Comparative cambial dynamics and phenology of Quercus robur L. and Q. pyrenaica Willd. in an Atlantic forest of the northwestern Iberian Peninsula. Trees, 27, 1571–1585.CrossRefGoogle Scholar
  34. Guerra, F., Galán, C., Daza, J. C., Miguel, R., Moreno, C., González, J., et al. (1995). Study of sensitivity to the pollen of Fraxinus spp. (Oleaceae) in Córdoba, Spain. Journal of Investigational Allergology and Clinical Immunology, 5, 166–170.Google Scholar
  35. Guitián, J., Medrano, M., & Oti, J. (2004). Variation in floral sex allocation in Polygonatum odoratum (Liliaceae). Annals of Botany, 94, 433–440.CrossRefGoogle Scholar
  36. Gupta, A. K., Singh, M., Marboh, E. S., Nath, V., Pongener, A., & Anal, A. K. D. (2017). Pollen Quantity, Viability and in vitro Pollen Germination of Longan (Dimocarpus longan Lour.). International Journal of Current Microbiology Applied Science, 6(7), 270–278.CrossRefGoogle Scholar
  37. Hechmi, M., Khaled, M., & Echarari, F. (2015). In vitro pollen germination of four olive cultivars (Olea europaea L.): Effect of boric acid and storage. American Journal of Plant Physiology, 10, 55–67.CrossRefGoogle Scholar
  38. Heslop-Harrison, J., & Heslop-Harrison, Y. (1970). Evaluation of pollen viability by enzymatically induced fluorescence; intracellular hydrolysis of fluorescein diacetate. Stain Technology, 45, 115–120.CrossRefGoogle Scholar
  39. Heslop-Harrison, J., Heslop-Harrison, Y., & Shivanna, K. R. (1984). The evaluation of pollen quality, and a further appraisal of the fluorochromatic (FCR) test procedure. Theoretical and Applied Genetics, 67, 367–375.CrossRefGoogle Scholar
  40. Ishida, K., & Hiura, T. (1998). Pollen fertility and flowering phenology in an androdioecious tree, Fraxinus lanuginosa (Oleaceae), in Hokkaido, Japan. International Journal of Plant Sciences, 159, 941–947.CrossRefGoogle Scholar
  41. Jato, V., Rodríguez-Rajo, F. J., Dacosta, N., & Aira, M. J. (2004). Heat and chill requirements of Fraxinus flowering in Galicia (NW Spain). Grana, 43, 217–223.CrossRefGoogle Scholar
  42. Kouboris, G. C., Metzidakis, I. T., & Vasilakakis, M. D. (2012). Intraspecific variation in pollen viability, germination and ultrastructure of Olea europaea L. African Journal of Biotechnology, 11, 13442–13446.Google Scholar
  43. LaDeau, S. L., & Clark, J. S. (2006). Pollen production by Pinus taeda growing in elevated atmospheric CO2. Functional Ecology, 20, 541–547.CrossRefGoogle Scholar
  44. Marks, G. E. (1954). An aceto-carmine glycerol jelly for use in pollen-fertility counts. Stain Technology, 29, 277.CrossRefGoogle Scholar
  45. Mazer, S. J., Travers, S. E., Cook, B. I., Davies, T. J., Bolmgren, K., Kraft, N. J. B., et al. (2013). Flowering date of taxonomic families predicts phenological sensitivity to temperature: Implications for forecasting the effects of climate change on unstudied taxa. American Journal of Botany, 100, 1381–1397.CrossRefGoogle Scholar
  46. Orlandi, F., Aguilera, F., Galán, C., Msallem, M., & Fornaciari, M. (2017). Olive yields forecasts and oil price trends in Mediterranean areas: A comprehensive analysis of the last two decades. Experimental Agriculture, 53, 71–83.CrossRefGoogle Scholar
  47. Oteros, J., Orlandi, F., García-Mozo, H., Aguilera, F., Dhiab, A. B., Bonofiglio, T., et al. (2014). Better prediction of Mediterranean olive production using pollen-based models. Agronomy for Sustainable Development, 34, 685–694.Google Scholar
  48. Pérez de Lis, G., Rossi, S., Vázquez-Ruiz, R. A., Rozas, V., & García-González, I. (2016). Do changes in spring phenology affect earlywood vessels? Perspective from the xylogenesis monitoring of two sympatric ring-porous oaks. New Phytologist, 209, 521–530.CrossRefGoogle Scholar
  49. Pfaar, O., Bastl, K., Berger, U., Buters, J., Calderon, M. A., Clot, B., et al. (2017). Defining pollen exposure times for clinical trials of allergen immunotherapy for pollen-induced rhinoconjunctivitis—An EAACI position paper. Allergy, 72, 713–722.CrossRefGoogle Scholar
  50. Qureshi, J., Khan, M. A., Arshad, M., Rashid, A., & Ahmad, M. (2009). Pollen fertility (viability) status in Asteraceae species of Pakistan. Trakia Journal of Sciences, 7, 12–16.Google Scholar
  51. R Core Team. (2017). R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. Accessed 16 Nov 2017.
  52. Rajora, O. P., & Zsuffa, L. (1986). Pollen viability of some Populus species as indicated by in vitro pollen germination and tetrazolium chloride staining. Canadian Journal of Botany, 64, 1086–1088.CrossRefGoogle Scholar
  53. Ramírez-Godina, F., Robledo-Torres, V., Foroughbakhch-Pournavab, R., Benavides-Mendoza, A., & Alvarado-Vázquez, M. A. (2013). Viabilidad de polen y tamaño de estomas en autotetraploides y diploides de Physalis ixocarpa. Botanical Sciences, 91, 11–18.CrossRefGoogle Scholar
  54. Rapiejko, P., Stanlaewixk, W., Sxczygielski, K., & Jurkiewicz, D. (2007). Threshold pollen count necessary to evoke allergic symptoms. Otolaryngologia polska, 61, 591–594.CrossRefGoogle Scholar
  55. Rejón, J. D., Suárez, C. G., Alché, J. D., Casastro, A. J., & Rodríguez-García, M. I. (2010). Evaluación de diferentes métodos para estimar la calidad del polen en distintos cultivares de olivo (Olea europaea L.). Polen, 20, 61–72.Google Scholar
  56. Rodríguez-Riaño, T., & Dafni, A. (2000). A new procedure to asses pollen viability. Sexual Plant Reproduction, 12, 241–244.CrossRefGoogle Scholar
  57. Rojo, J., & Pérez-Badia, R. (2015). Models for forecasting the flowering of Cornicabra olive groves. International Journal of Biometeorology, 59, 1547–1556.CrossRefGoogle Scholar
  58. Rojo, J., Salido, P., & Pérez-Badia, R. (2015). Flower and pollen production in the ‘Cornicabra’ olive (Olea europaea L.) cultivar and the influence of environmental factors. Trees, 29, 1235–1245.CrossRefGoogle Scholar
  59. Shivanna, K. R., & Heslop-Harrison, J. (1981). Membrane state and pollen viability. Annals of Botany, 47, 759–770.CrossRefGoogle Scholar
  60. Shivanna, K. R., & Rangaswamy, N. S. (1992). Pollen biology: A laboratory manual. Berlin: Springer.CrossRefGoogle Scholar
  61. Smith, M., Jäger, S., Berger, U., Šikoparija, B., Hallsdottir, M., Sauliene, I., et al. (2014). Geographic and temporal variations in pollen exposure across Europe. Allergy, 69, 913–923.CrossRefGoogle Scholar
  62. Sulusoglu, M., & Cavusoglu, A. (2014). In vitro pollen viability and pollen germination of service tree (Sorbus domestica L.). International Journal of Biosciences, 5, 108–114.Google Scholar
  63. Tal, O. (2011). Flowering phenological pattern in crowns of four temperate deciduous tree species and its reproductive implications. Plant Biology, 13(S1), 62–70.CrossRefGoogle Scholar
  64. Talavera, S., Andrés, C., Arista, M., Fernández Piedra, M. P., Gallego, M. J., Ortiz, P. L., et al. (2012). Flora iberica 11. Madrid: Real Jardín Botánico, CSIC.Google Scholar
  65. Thomas, P. A. (2016). Biological flora of the British Isles: Fraxinus excelsior. Journal of Ecology, 104, 1158–1209.CrossRefGoogle Scholar
  66. Tormo Molina, R., Muñoz Rodríguez, A., Silva Palaciso, I., & Gallardo López, F. (1996). Pollen production in anemophilous trees. Grana, 35, 38–46.CrossRefGoogle Scholar
  67. Trigo, M. M., Jato, V., Fernández, D., & Galán, C. (2008). Atlas aeropalinológico de España. España: Universidad de León.Google Scholar
  68. Tsai, C. W., Young, T., Warren, P. H., & Maltby, L. (2016). Phenological responses of ash (Fraxinus excelsior) and sycamore (Acer pseudoplatanus) to riparian thermal conditions. Urban Forestry & Urban Greening, 16, 95–102.CrossRefGoogle Scholar
  69. Vara, A., Fernández-González, M., Aira, M. J., & Rodríguez-Rajo, F. J. (2016a). Oleaceae cross-reactions as potential pollinosis cause in urban areas. Science of the Total Environment, 542, 435–440.CrossRefGoogle Scholar
  70. Vara, A., Fernández-González, M., Aira, M. J., & Rodríguez-Rajo, F. J. (2016b). Fraxinus pollen and allergen concentrations in Ourense (South-western Europe). Environmental Research, 47, 241–248.CrossRefGoogle Scholar
  71. Weryszko-Chmielewska, E., Puc, M., & Piotrowska, K. (2006). Effect of meteorological factors on Betula, Fraxinus and Quercus pollen concentrations in the atmosphere of Lublin and Szczecin, Poland. Annals of Agricultural and Environmental Medicine, 13, 243–249.Google Scholar
  72. Wickham, H. (2009). Elegant graphics for data analysis. New York: Springer (ggplot2).Google Scholar
  73. Wu, S., Collins, G., & Sedgley, M. (2002). Sexual compatibility within and between olive cultivars. The Journal of Horticultural Science & Biotechnology, 77, 665–673.CrossRefGoogle Scholar
  74. Zambon, C. R., Silva, L. F. O., Pio, R., Figueiredo, M. A., & Silva, K. N. (2014). Estabelecimento de meio de cultura e quantificação da germinação de grãos de pólen de cultivares de marmeleiro. Revista Brasileira de Fruticultura, 36, 400–407.CrossRefGoogle Scholar
  75. Zhang, Z., Zhe, J., Chandra, S., & Hub, J. (2005). An electronic pollen detection method using Coulter counting principle. Atmospheric Environment, 39, 5446–5453.CrossRefGoogle Scholar
  76. Ziska, L. H., & Beggs, P. J. (2012). Anthropogenic climate change and allergen exposure: The role of plant biology. Journal of Allergy and Clinical Immunology, 129, 27–32.CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • P. Castiñeiras
    • 1
    Email author
  • R. A. Vázquez-Ruiz
    • 2
  • M. Fernández-González
    • 3
  • F. J. Rodríguez-Rajo
    • 3
  • M. J. Aira
    • 1
  1. 1.Department of Botany, Pharmacy FacultyUniversity of Santiago of CompostelaSantiago de CompostelaSpain
  2. 2.Department of Botany, Higher Polytechnic Engineering SchoolUniversity of Santiago of CompostelaLugoSpain
  3. 3.Department of Plant Biology and Soil Sciences, Sciences Faculty of OurenseUniversity of VigoOurenseSpain

Personalised recommendations