, Volume 34, Issue 2, pp 139–155 | Cite as

Thirty-four years of pollen monitoring: an evaluation of the temporal variation of pollen seasons in Belgium

  • Lucie Hoebeke
  • Nicolas Bruffaerts
  • Caroline Verstraeten
  • Andy Delcloo
  • Tom De Smedt
  • Ann Packeu
  • Monique Detandt
  • Marijke Hendrickx
Original Paper


For the first time in Belgium, fluctuations in airborne pollen quantities over a 34 years period have been analyzed. Seven pollen types have been selected comprising the most clinically relevant in Belgium nowadays (birch, alder, hazel and grasses) and others that are known to be allergenic in other European countries and frequently found in Belgium (plane, ash and mugwort). Pollen monitoring was performed with a seven-day recording volumetric spore trap placed in Brussels. We measured increasing airborne pollen for four trees, namely alder, hazel, ash and plane. Although the total pollen index for birch has not increased significantly, an increasing trend in the annual amount of days above the concentration threshold of 80 pollen grains/m3 was clearly observed. Concerning temporal variations, the pollen season has tended to end earlier for birch, ash and plane and the peak concentration of the pollen of plane has been appearing earlier in the year. In the investigated period, the pollen seasons of grasses and mugwort have tended to become less severe. Furthermore, we reported a temporal shift of the grass pollen season, beginning and ending earlier, together with an advance of the annual peak date.


Airborne pollen Trends Pollen season Belgium 



The Belgian Aerobiological Surveillance Network is supported by the Public Service of Wallonia, the Province of Luxembourg, Brussels Environment and the Flemish Agency for Care and Health.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Alcazár, P., Garcia-Mozo, H., Trigo, M. M., Ruiz, L., Gonzalez-Minero, F. J., Hidalgo, P., et al. (2011). Platanus pollen season in Andalusia (southern Spain): trends and modeling. Journal of Environmental Monitoring, 13(9), 2502–2510.CrossRefGoogle Scholar
  2. Ariano, R., Canonica, G. W., & Passalacqua, G. (2010). Possible role of climate changes in variations in pollen seasons and allergic sensitizations during 27 years. Annals of Allergy, Asthma and Immunology, 104(3), 215–222.CrossRefGoogle Scholar
  3. Asam, C., Hofer, H., Wolf, M., Aglas, L., & Wallner, M. (2015). Tree pollen allergens-an update from a molecular perspective. Allergy, 70(10), 1201–1211.CrossRefGoogle Scholar
  4. Bachert, C., Van Cauwenberge, P., Olbrecht, J., & Van Schoor, J. (2006). Prevalence, classification and perception of allergic and nonallergic rhinitis in Belgium. Allergy, 61(6), 693–698.CrossRefGoogle Scholar
  5. Bauchau, V., & Durham, S. R. (2004). Prevalence and rate of diagnosis of allergic rhinitis in Europe. European Respiratory Journal, 24(5), 758–764.CrossRefGoogle Scholar
  6. Blomme, K., Tomassen, P., Lapeere, H., Huvenne, W., Bonny, M., Acke, F., et al. (2013). Prevalence of allergic sensitization versus allergic rhinitis symptoms in an unselected population. International Archives of Allergy and Immunology, 160(2), 200–207.CrossRefGoogle Scholar
  7. Bogawski, P., Grewling, L., & Fratczak, A. (2016). Flowering phenology and potential pollen emission of three Artemisia species in relation to airborne pollen data in Poznan (Western Poland). Aerobiologia (Bologna), 32, 265–276.CrossRefGoogle Scholar
  8. Bogawski, P., Grewling, L., Nowak, M., Smith, M., & Jackowiak, B. (2014). Trends in atmospheric concentrations of weed pollen in the context of recent climate warming in Poznan (Western Poland). International Journal of Biometeorology, 58(8), 1759–1768.CrossRefGoogle Scholar
  9. Brussels Institute of Statistics and Analysis. (2015). Accessed September 1, 2017.
  10. Caillaud, D. M., Martin, S., Segala, C., Vidal, P., Lecadet, J., Pellier, S., et al. (2015). Airborne pollen levels and drug consumption for seasonal allergic rhinoconjunctivitis: A 10-year study in France. Allergy, 70(1), 99–106.CrossRefGoogle Scholar
  11. Clot, B. (2003). Trends in airborne pollen: An overview of 21 years of data in Neuchâtel (Switzerland). Aerobiologia, 19(3), 227–234.CrossRefGoogle Scholar
  12. D’Amato, G., Cecchi, L., Bonini, S., Nunes, C., Annesi-Maesano, I., Behrendt, H., et al. (2007). Allergenic pollen and pollen allergy in Europe. Allergy, 62(9), 976–990.CrossRefGoogle Scholar
  13. de Weger, L. A., Bergmann, K. C., Rantio-Lehtimaki, A., Dahl, A., Buters, J., Déchamp, C., et al. (2013). Impact of Pollen. In M. Sofiev & K. C. Bergmann (Eds.), Allergenic pollen: A review of the production, release, distribution and health impacts (pp. 161–215). New York: Springer.CrossRefGoogle Scholar
  14. Decoux V. Gestion des alignements “léopoldiens”. (2013). Objectifs et contraintes des gestionnaires régionaux bruxellois. Brussels Regional Public Servic—Brussels Mobility. Accessed September 1, 2017.
  15. Detandt, M., & Nolard, N. (2000). The fluctuations of the allergenic pollen content of the air in Brussels (1982 to 1997). Aerobiologia, 16, 55–61.CrossRefGoogle Scholar
  16. Emberlin, J., Detandt, M., Gehrig, R., Jaeger, S., Nolard, N., & Rantio-Lehtimaki, A. (2002). Responses in the start of Betula (birch) pollen seasons to recent changes in spring temperatures across Europe. International Journal of Biometeorology, 46(4), 159–170.CrossRefGoogle Scholar
  17. Emberlin, J., Smith, M., Close, R., & Adams-Groom, B. (2006). Changes in the pollen seasons of the early flowering trees Alnus spp. and Corylus spp. in Worcester, United Kingdom, 1996-2005. International Journal of Biometeorology, 51(3), 181.CrossRefGoogle Scholar
  18. Fernández, J., Flores, E., Varea, M., Soriano, V., & Garcia, P. (2015). Evolution of the incidence of pollen grains and sensitivity to pollen in the city of Elche (Spain). Asian Pacific Journal of Allergy and Immunology, 33(3), 196–202.Google Scholar
  19. Fernandez-Llamazares, A., Belmonte, J., Delgado, R., & De, L. C. (2014). A statistical approach to bioclimatic trend detection in the airborne pollen records of Catalonia (NE Spain). International Journal of Biometeorology, 58(3), 371–382.CrossRefGoogle Scholar
  20. Frei, T., & Gassner, E. (2008). Climate change and its impact on birch pollen quantities and the start of the pollen season an example from Switzerland for the period 1969–2006. International Journal of Biometeorology, 52(7), 667–674.CrossRefGoogle Scholar
  21. Gabarra, E., Belmonte, J., & Canela, M. (2002). Aerobiological behaviour of Platanus L. pollen in Catalonia (North-East Spain). Aerobiologia, 18(3), 185–193.CrossRefGoogle Scholar
  22. Galán, C., Alcazar, P., Oteros, J., Garcia-Mozo, H., Aira, M. J., Belmonte, J., et al. (2016). Airborne pollen trends in the Iberian Peninsula. Science of the Total Environment, 550, 53–59.CrossRefGoogle Scholar
  23. Galán, C., Smith, M., Thibaudon, M., Frenguelli, G., Oteros, J., Gehrig, R., et al. (2014). Pollen monitoring: minimum requirements and reproducibility of analysis. Aerobiologia, 30(4), 385–395.CrossRefGoogle Scholar
  24. Green, B. J., Dettmann, M., Yli-Panula, E., Rutherford, S., & Simpson, R. (2004). Atmospheric Poaceae pollen frequencies and associations with meteorological parameters in Brisbane, Australia: a 5-year record, 1994–1999. International Journal of Biometeorology, 48(4), 172–178.CrossRefGoogle Scholar
  25. Grewling, L., Sikoparija, B., Skjoth, C. A., Radisic, P., Apatini, D., Magyar, D., et al. (2012). Variation in Artemisia pollen seasons in Central and Eastern Europe. Agricultural and Forest Meteorology, 160, 48–59.CrossRefGoogle Scholar
  26. Guilbert, A., Simons, K., Hoebeke, L., Packeu, A., Hendrickx, M., De Cremer, K., et al. (2016). Short-term effect of pollen and spore exposure on allergy morbidity in the Brussels-capital region. EcoHealth, 13(2), 303–315.CrossRefGoogle Scholar
  27. Hemmer, W., Focke, M., Wantke, F., Gotz, M., Jarisch, R., Jager, S., et al. (2000). Ash (Fraxinus excelsior)-pollen allergy in central Europe: specific role of pollen panallergens and the major allergen of ash pollen, Fra e 1. Allergy, 55(10), 923–930.CrossRefGoogle Scholar
  28. Irani, C., Karam, M., Baz, Z., Maatouk, H., & Zaitoun, F. (2013). Airborne pollen concentrations and the incidence of allergic asthma and rhinoconjunctivitis in Lebanon. Revue Française d’Allergologie, 53(5), 441–445.CrossRefGoogle Scholar
  29. Jablonski, L. M., Wang, X., & Curtis, P. S. (2002). Plant reproduction under elevated CO2 conditions: A meta-analysis of reports on 79 crop and wild species. New Phytologist, 156(1), 9–26.CrossRefGoogle Scholar
  30. Jäger, S., Nilsson, S., Berggren, B., Pessi, A. M., Helander, M., & Ramfjord, H. (1996). Trends of some airborne tree pollen in the Nordic countries and Austria, 1980–1993. Grana, 35(3), 171–178.CrossRefGoogle Scholar
  31. LaDeau, S. L., & Clark, J. S. (2001). Rising CO2 levels and the fecundity of forest trees. Science, 292(5514), 95–98.CrossRefGoogle Scholar
  32. Lind, T., Ekebom, A., Alm, K. K., Ostensson, P., Bellander, T., & Lohmus, M. (2016). Pollen Season Trends (1973–2013) in Stockholm Area, Sweden. PLoS ONE, 11(11), e0166887.CrossRefGoogle Scholar
  33. Makra, L., Matyasovszky, I., & Deak, A. J. (2011). Trends in the characteristics of allergenic pollen circulation in central Europe based on the example of Szeged, Hungary. Atmospheric Environment, 45, 6010–6018.CrossRefGoogle Scholar
  34. Malkiewicz, M., Drzeniecka-Osiadacz, A., & Krynicka, J. (2016). The dynamics of the Corylus, Alnus, and Betula pollen seasons in the context of climate change (SW Poland). Science of the Total Environment, 573, 740–750.CrossRefGoogle Scholar
  35. Newnham, R. M., Sparks, T. H., Skjoth, C. A., Head, K., Adams-Groom, B., & Smith, M. (2013). Pollen season and climate: Is the timing of birch pollen release in the UK approaching its limit? International Journal of Biometeorology, 57(3), 391–400.CrossRefGoogle Scholar
  36. Nilsson, S., & Persson, S. (1981). Tree pollen spectra in the Stockholm region (Sweden), 1973–1980. Grana, 20(3), 179–182.CrossRefGoogle Scholar
  37. Pauli, G., Hutt, N., & Stchetchicova, O. (2014). Pollinose au chêne, au platane, au plantain, à l’armoise. Mythe ou réalité? Revue Française d’Allergologie, 54(8), 557–565.CrossRefGoogle Scholar
  38. Pfaar, O., Bastl, K., Berger, U., Buters, J., Calderon, M. A., Clot, B., et al. (2017). Defining pollen exposure times for clinical trials of allergen immunotherapy for pollen-induced rhinoconjunctivitis: An EAACI position paper. Allergy, 72(5), 713–722. CrossRefGoogle Scholar
  39. Poncet, P., Senechal, H., Clement, G., Purohit, A., Sutra, J. P., Desvaux, F. X., et al. (2010). Evaluation of ash pollen sensitization pattern using proteomic approach with individual sera from allergic patients. Allergy, 65(5), 571–580.CrossRefGoogle Scholar
  40. Rasmussen, A. (2002). The effects of climate change on the birch pollen season in Denmark. Aerobiologia, 18(3), 253–265.CrossRefGoogle Scholar
  41. Silverberg, J. I., Braunstein, M., & Lee-Wong, M. (2015). Association between climate factors, pollen counts, and childhood hay fever prevalence in the United States. Journal of Allergy and Clinical Immunology, 135(2), 463–469.CrossRefGoogle Scholar
  42. Smith, M., & Emberlin, J. (2006). A 30-day-ahead forecast model for grass pollen in north London, United Kingdom. International Journal of Biometeorology, 50(4), 233–242.CrossRefGoogle Scholar
  43. Smith, M., Jager, S., Berger, U., Sikoparija, B., Hallsdottir, M., Sauliene, I., et al. (2014). Geographic and temporal variations in pollen exposure across Europe. Allergy, 69(7), 913–923.CrossRefGoogle Scholar
  44. Spieksma, F. T., Corden, J. M., Detandt, M., Millington, W. M., Nikkels, H., Nolard, N., et al. (2003). Quantitative trends in annual totals of five common airborne pollen types (Betula, Quercus, Poaceae, Urtica, and Artemisia), at five pollen-monitoring stations in western Europe. Aerobiologia, 19, 171–184.CrossRefGoogle Scholar
  45. Spieksma, F. T., Emberlin, J. C., Hjelmroos, M., Jäger, S., & Leuschner, R. M. (1995). Atmospheric birch (Betula) pollen in Europe: Trends and fluctuations in annual quantities and the starting dates of the seasons. Grana, 34(1), 51–57.CrossRefGoogle Scholar
  46. Stach, A., Garcia-Mozo, H., Prieto-Baena, J. C., Czarnecka-Operacz, M., Jenerowicz, D., Silny, W., et al. (2007). Prevalence of Artemisia species pollinosis in western Poland: Impact of climate change on aerobiological trends, 1995–2004. Journal of Investigational Allergology and Clinical Immunology, 17(1), 39–47.Google Scholar
  47. Subiza, J., Jerez, M., Jimenez, J. A., Narganes, M. J., Cabrera, M., Varela, S., et al. (1995). Allergenic pollen pollinosis in Madrid. Journal of Allergy and Clinical Immunology, 96(1), 15–23.CrossRefGoogle Scholar
  48. Varela, S., Subiza, J., Subiza, J. L., Rodriguez, R., Garcia, B., Jerez, M., et al. (1997). Platanus pollen as an important cause of pollinosis. Journal of Allergy and Clinical Immunology, 100(6 Pt 1), 748–754.CrossRefGoogle Scholar
  49. Ziello, C., Sparks, T. H., Estrella, N., Belmonte, J., Bergmann, K. C., Bucher, E., et al. (2012). Changes to airborne pollen counts across Europe. PLoS ONE, 7(4), e34076.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2017

Authors and Affiliations

  • Lucie Hoebeke
    • 1
  • Nicolas Bruffaerts
    • 1
  • Caroline Verstraeten
    • 1
  • Andy Delcloo
    • 2
  • Tom De Smedt
    • 3
  • Ann Packeu
    • 1
  • Monique Detandt
    • 1
  • Marijke Hendrickx
    • 1
  1. 1.Service Mycology & AerobiologyScientific Institute of Public HealthBrusselsBelgium
  2. 2.Ozone, UV and Aerosols GroupRoyal Meteorological Institute of BelgiumBrusselsBelgium
  3. 3.P95 Epidemiology and Pharmacovigilance Consulting and Services, LeuvenHeverleeBelgium

Personalised recommendations