, Volume 33, Issue 3, pp 363–373 | Cite as

Aeroallergens: a comparative study of two monitoring methods

  • M. P. PlazaEmail author
  • P. Alcázar
  • M. J. Velasco-Jiménez
  • C. Galán
Original Paper


Olive and grass pollen grains are the major causes of hay fever in the Mediterranean region. A number of samplers and methods have been developed in recent years in order to obtain reliable data regarding airborne allergen concentrations. This paper reports on a detailed comparison of two samplers—Cyclone and ChemVol—and on the parameters that could influence their efficiency. Airborne concentrations of two key olive and grass allergens, Ole e 1 and Phl p 5, respectively, were monitored over two years with different weather patterns, 2012 and 2014. Allergenic particles were quantified by ELISA assay, and results were compared with pollen concentrations monitored using a Hirst-type volumetric spore trap over the same study periods. The influence of weather-related parameters on local airborne pollen and allergen concentrations was also analysed. Although a positive correlation was detected between results obtained using the two samplers during the pollen season, results for the cumulative annual Allergen Index varied considerably. The two samplers revealed a positive correlation between pollen concentrations and both minimum temperature during the warmer year (2012) and maximum temperature during the cooler year (2014); a negative significant correlation was observed in both cases with rainfall and relative humidity. In summary, although some differences were observed between the two samplers studied, both may be regarded as suitable for allergen detection.


Olive Grass Aeroallergens Cyclone sampler ChemVol sampler Airborne pollen 



This study was partly supported by Ministerio de Economía y Competitividad I + D + I “RETOS INVESTIGACIÓN” under Project “Study on phenological trends in plants of Western Mediterranean and its relation to climate change (FENOMED)”. The authors would like to thank the technical support of SCAI (Central Service Support Research) of University of Córdoba.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Alcázar, P., Galán, C., Torres, C., & Domínguez-Vilches, E. (2015). Detection of airborne allergen (Pla a 1) in relation to Platanus pollen in Córdoba, South Spain. Annals of Agricultural and Environmental Medicine, 22(1), 96–101.CrossRefGoogle Scholar
  2. Andersen, A. A. (1958). New sampler for the collection, sizing and enumeration of viable airborne particles. Journal of Bacteriology, 76, 471–484.Google Scholar
  3. Arilla, M. C., Eraso, E., Ibarrola, I., Algorta, J., Martínez, A., & Asturias, J. A. (2002). Monoclonal antibody-based method for measuring olive pollen major allergen Ole e 1. Annals of Allergy, Asthma & Immunology, 89(1), 83–89.CrossRefGoogle Scholar
  4. Arilla, M. C., González-Rioja, R., Ibarrola, I., Mir, A., Monteseirin, J., Conde, J., et al. (2006). A sensitive monoclonal antibody-based enzyme-linked immunosorbent assay to quantify Parietaria judaica major allergens, Par j 1 and Par j 2. Clinical and Experimental Allergy, 36, 87–93.CrossRefGoogle Scholar
  5. Arilla, M. C., Ibarrola, I., Mir, A., Monteseirin, J., Conde, J., Martínez, A., et al. (2005). Development of a sandwich-type ELISA for measuring Pla a 1, the major allergen of Platanus acerifolia pollen. International Archives of Allergy and Immunology, 138(2), 127–133.CrossRefGoogle Scholar
  6. Beggs, P. J. (1998). Pollen and pollen antigen as triggers of asthma: What to measure? Atmospheric Environment, 32(10), 1777–1783.CrossRefGoogle Scholar
  7. Brito, F. F., Gimeno, P. M., Carnes, J., Martín, R., Fernández-Caldas, E., Lara, P., et al. (2011). Olea europaea pollen counts and aeroallergen levels predict clinical symptoms in patients allergic to olive pollen. Annals of Allergy, Asthma & Immunology, 106(2), 146–152.CrossRefGoogle Scholar
  8. Buters, J. T., Kasche, A., Weichenmeier, I., Schober, W., Klaus, S., Traidl-Hoffmann, C., et al. (2008). Year-to-year variation in release of bet v 1 allergen from Birch Pollen: Evidence for geographical differences between West and South Germany. International Archives of Allergy and Immunology, 2008(145), 122–130. doi: 10.1159/000108137.Google Scholar
  9. Buters, J., Prank, M., Sofiev, M., Pusch, G., Albertini, R., Annesi-Maesano, I., et al. (2015). Variation of the group 5 grass pollen allergen content of airborne pollen in relation to geographic location and time in season. Journal of Allergy and Clinical Immunology, 136(1), 87–95.CrossRefGoogle Scholar
  10. Buters, J., Thibaudon, M., Smith, M., Kennedy, R., Rantio-Lehtimäki, A., Albertini, R., et al. (2012). Release of Bet v 1 from birch pollen from 5 European countries. Results from the HIALINE study. Atmospheric Environment, 55, 496–505.CrossRefGoogle Scholar
  11. Buters, J. T., Weichenmeier, I., Ochs, S., Pusch, G., Kreyling, W., Boere, A. J., et al. (2010). The allergen Bet v 1 in fractions of ambient air deviates from birch pollen counts. Allergy, 65(7), 850–858.CrossRefGoogle Scholar
  12. Cebrino, J., de la Cruz, S. P., Barasona, M. J., Alcázar, P., Moreno, C., Domínguez-Vilches, E., et al. (2017). Airborne pollen in Córdoba City (Spain) and its implications for pollen allergy. Aerobiologia. doi: 10.1007/s10453-016-9469-8.Google Scholar
  13. Cebrino, J., Galán, C., & Domínguez-Vilches, E. (2016). Aerobiological and phenological study of the main Poaceae species in Córdoba City (Spain) and the surrounding hills. Aerobiologia, 32, 595–606.CrossRefGoogle Scholar
  14. Cecchi, L. (2013). From Pollen count to pollen potency: The molecular era of aerobiology. European Respiratory Journal, 42, 898–900.CrossRefGoogle Scholar
  15. Cecchi, L., D’Amato, G., Ayres, J. G., Galan, C., Forastiere, F., Forsberg, B., et al. (2010). Projections of the effects of climate change on allergic asthma: The contribution of aerobiology. Allergy, 65(9), 1073–1081.Google Scholar
  16. D’Amato, G. (2001). Airborne paucimicronic allergen-carrying particles and seasonal respiratory allergy. Allergy, 56, 1109–1111.CrossRefGoogle Scholar
  17. D’Amato, G., Cecchi, L., Bonini, S., Nunes, C., Annesi-Maesano, I., Behrendt, H., et al. (2007). Allergenic pollen and pollen allergy in Europe. Allergy, 62(9), 976–990.CrossRefGoogle Scholar
  18. D’Amato, G., De Palma, R., Verga, A., Martucci, P., Liccardi, G., & Lobefalo, G. (1991). Antigenic activity of nonpollen parts (leaves and stems) of allergenic plants (Parietaria judaica and Dactylis glomerata). Annals of Allergy, Asthma & Immunology, 67(4), 421–424.Google Scholar
  19. De Linares, C., Díaz de la Guardia, C., Nieto Lugilde, D., & Alba, F. (2010). Airborne study of grass allergen (Lol p 1) in different-sized particles. International Archives of Allergy and Immunology, 152(1), 49–57.CrossRefGoogle Scholar
  20. De Linares, C., Nieto-Lugilde, D., Alba, F., Díaz de la Guardia, C., Galán, C., & Trigo, M. M. (2007). Detection of airborne allergen (Ole e 1) in relation to Olea europaea pollen in Spain. Clinical and Experimental Allergy, 37(1), 125–132.CrossRefGoogle Scholar
  21. De Weed, N. A., Bhalla, P. L., & Singh, M. B. (2002). Aeroallergens and pollinosis: molecular characteristics of cloned pollen allergens. Aerobiologia, 18, 87–106.CrossRefGoogle Scholar
  22. Demokritou, P., Kavouras, I. G., Ferguson, S. T., & Koutrakis, P. (2002). Development of a high volume cascade impactor for toxicological and chemical characterization studies. Aerosol Science and Technology, 36(9), 925–933.CrossRefGoogle Scholar
  23. Eder, W., Ege, M. J., & von Mutius, E. (2006). The Asthma Epidemic. New England Journal of Medicine, 355(21), 2226–2235.CrossRefGoogle Scholar
  24. Emberlin, J. (1995). Analysis of allergens on airborne particles. Progress and problems. In European pollen flug-symposium, vorträge Berichte (pp. 48–62).Google Scholar
  25. Fernández-Caldas, E., Bandele, E. O., Dunnette, S. L., Swanson, M. C., & Reed, C. E. (1992). Rye grass group allergen content in leaves from seven different grass species. Grana, 31, 157–159.CrossRefGoogle Scholar
  26. Fernández-González, D., González-Parrado, Z., Vega Maray, A. M., Valencia-Barrera, R. M., Camazón-Izquierdo, B., De Nuntiis, P., et al. (2010). Platanus pollen allergen, Pla a 1: Quantification in the atmosphere and influence on a sensitizing population. Clinical and Experimental Allergy, 40(11), 1701–1708.CrossRefGoogle Scholar
  27. Fernández-González, D., Rodríguez Rajo, F., González Parrado, Z., Valencia-Barrera, R., Jato, V., & Moreno Grau, S. (2011). Differences in atmospheric emissions of Poaceae pollen and Lol p 1 allergen. Aerobiologia, 27(4), 301–309.CrossRefGoogle Scholar
  28. Galán, C., Antunes, C., Brandao, R., Torres, C., Garcia-Mozo, H., Caeiro, E., et al. (2013). HIALINE working group, Airborne olive pollen counts are not representative of exposure to the major olive allergen Ole e 1. Allergy, 68(6), 809–812.CrossRefGoogle Scholar
  29. Galán, C., Cariñanos, P., Alcázar, P., & Domínguez-Vilches, E. (2007). Manual de Calidad y Gestión de la Red Española de Aerobiología. Córdoba: Servicio de Publicaciones la University
  30. Galán, C., Smith, M., Thibaudon, M., Frenguelli, G., Oteros, J., Gehrig, R., et al. (2014). Pollen monitoring: Minimum requirements and reproducibility of analysis. Aerobiologia, 30(4), 385–395.CrossRefGoogle Scholar
  31. Hirst, J. M. (1952). An automatic volumetric spore-trap. Annals of Applied Biology, 36, 257–265.CrossRefGoogle Scholar
  32. Jochner, S., Lüpke, M., Laube, J., Weichenmeier, I., Pusch, G., Traidl-Hoffmann, C., et al. (2015). Seasonal variation of birch and grass pollen loads and allergen release at two sites in the German Alps. Atmospheric Environment, 122, 83–93.CrossRefGoogle Scholar
  33. León-Ruiz, E., Alcázar, P., Domínguez-Vilchez, E., & Galán, C. (2011). Study of Poaceae phenology in a Mediterranean climate. Which species contribute most to airborne pollen counts? Aerobiologia, 27, 37–50.CrossRefGoogle Scholar
  34. Levetin, E. (2004). Methods for Aeroallergen Sampling. Current Allergy and Asthma Reports, 4, 376–383.CrossRefGoogle Scholar
  35. Mandrioli, P., Comtois, P., Domínguez Vilches, E., Galán, C., Isard, S., & Syzdek, L. (1998). Sampling: Principles and techniques. In Mandrioli et al. (eds.) Methods in aerobiology (pp. 47–112, Pitagora Ed.). Bologna.Google Scholar
  36. Martínez-Bracero, M., Alcázar, P., Díaz de la Guardia, C., González-Minero, F. J., Ruiz, M., Trigo, M., et al. (2015). Pollen calendars: A guide to common airborne pollen in Andalusia. Aerobiologia, 31, 549–557.CrossRefGoogle Scholar
  37. Moreno-Grau, S., Elvira-Rendueles, B., Moreno, J., García-Sánchez, A., Vergara, N., Asturias, J. A., et al. (2006). Correlation between Olea europaea and Parietaria judaica pollen counts and quantification of their major allergens Ole e 1 and Par j 1 e Par j 2. Annals of Allergy, Asthma & Immunology, 96(6), 858–864.CrossRefGoogle Scholar
  38. Plaza, M. P., Alcázar, P., & Galán, C. (2016a). Correlation between airborne Olea europaea pollen concentrations and levels of the major allergen Ole e 1 in Córdoba, Spain, 2012–2014. International Journal of Biometeorology, 60(12), 1841–1847.CrossRefGoogle Scholar
  39. Plaza, M. P., Alcázar, P., Hernández-Ceballos, M. A., & Galán, C. (2016b). Mismatch in aeroallergens and airborne grass pollen concentrations. Atmospheric Environment, 144, 361–369.CrossRefGoogle Scholar
  40. Rantio-Lehtimäki, A., Viander, M., & Koivikko, A. (1994). Airborne birch pollen antigens in different particle sizes. Clinical and Experimental Allergy, 24(1), 23–28.CrossRefGoogle Scholar
  41. Rodríguez-Rajo, F. J., Jato, V., González-Parrado, Z., Elvira-Rendueles, B., Moreno-Grau, S., Vega-Maray, A., et al. (2011). The combination of airborne pollen and allergen quantification to reliably assess the real pollinosis risk in different bioclimatic areas. Aerobiologia, 27(1), 1–12.CrossRefGoogle Scholar
  42. Sánchez-Mesa, J. A., Brandao, R., Lopes, L., & Galán, C. (2005a). Correlation between pollen counts and symptoms in two different areas of the Iberian Peninsula: Córdoba (Spain) and Évora (Portugal). Journal of Investigational Allergology and Clinical Immunology, 15, 112–116.Google Scholar
  43. Sánchez-Mesa, J. A., Serrano, P., Cariñanos, P., Prieto-Baena, J. C., Moreno, C., Guerra, F., et al. (2005b). Pollen allergy in Córdoba city: Frequency of sensitization and relation with antihistamine sales. Journal of Investigational Allergology and Clinical Immunology, 15, 50–56.Google Scholar
  44. Scheifinger, H., Belmonte, J., Buters, J., Celenk, S., Damialis, A., Dechamp, C. et al. (2013). Monitoring, modelling and forecasting of the pollen season. In: M. Sofiev & K.-C. Bergmann (Eds.), Allergenic pollen (pp. 71–126). Netherlands: Springer. doi: 10.1007/978-94-007-4881-1_4.
  45. Takahashi, Y., Ohashi, T., Nagoya, T., Sakaguchi, M., Yasueda, H., & Nitta, H. (2001). Possibility of real-time measurement of an airborne Cryptomeria japonica pollen allergen based on the principle of surface Plasmon resonance. Aerobiologia, 17, 313–318.CrossRefGoogle Scholar
  46. Velasco-Jiménez, M. J., Alcázar, P., Domínguez-Vilches, E., & Galán, C. (2013). Comparative study of airborne pollen counts located in different areas of the city of Córdoba (south-western Spain). Aerobiologia, 29, 113–120.CrossRefGoogle Scholar
  47. Viander, M., & Koivikko, A. (1978). The seasonal symptoms of hyposensitized and untreated hay fever patients in relation to birch pollen counts: Correlations with nasal sensitivity, prick tests and RAST. Clinical and Experimental Allergy, 8(4), 387–396.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • M. P. Plaza
    • 1
    Email author
  • P. Alcázar
    • 1
  • M. J. Velasco-Jiménez
    • 1
  • C. Galán
    • 1
  1. 1.Department of Botany, Ecology and Plant PhysiologyUniversity of CórdobaCórdobaSpain

Personalised recommendations