Aerobiologia

, Volume 33, Issue 2, pp 253–264 | Cite as

Variations and trends of Betula pollen seasons in Moscow (Russia) in relation to meteorological parameters

Original Paper
  • 97 Downloads

Abstract

This study investigates possible links of meteorological data and the start date, end date, duration, date of peak, peak value and Seasonal Pollen Index (SPI) of birch pollen seasons recorded in Moscow, Russia, during 1993–2015. Pollen data were collected by a volumetric spore trap. Correlation analysis was used to study relationships between various parameters of pollen seasons. Simple linear regression analysis was conducted to investigate trends over time; multiple stepwise regression analysis was used to describe SPI fluctuations as a function of seasonal or monthly climatic parameters. Air temperatures increased significantly during the study period, but no effect on the timing of the birch pollen season was found. Only the severity of the season showed significant changes that can be considered as a consequence of global warming. Rainfall in May and June of the year preceding flowering, total rainfall in the 40-day pre-season period and average temperature during the pollination were shown to be the most important parameters affecting birch pollen concentrations.

Keywords

Betula pollen Meteorological parameters Regression analysis Central Russia 

Notes

Acknowledgements

This research was conducted with the financial support of Russian Science Foundation (RNF), Grant No. 14-50-00029 “Scientific basis of the national biobank—depository of the living systems.” The authors are very thankful to Bulat Khasanov for help in model development and to Olga Shilovtseva, the head of the Meteorological Station of Moscow State University, for providing meteorological data.

References

  1. Ariano, R., Canonica, G. W., & Passalacqua, G. (2010). Possible role of climate changes in variations in pollen seasons and allergic sensitizations during 27 years. Annals of Allergy, Asthma & Immunology, 104, 215–222.CrossRefGoogle Scholar
  2. Comtois, P. (1998). Statistical analysis of aerobiological data. In P. Mandrioli, P. Comtois, & V. Levizzani (Eds.), Methods in aerobiology. Bologna: Pitagora Editrice.Google Scholar
  3. D’Amato, G., Cecchi, L., Bonini, S., Nunes, C., Annesi-Maesano, I., Behrendt, H., et al. (2007). Allergenic pollen and pollen allergy in Europe. Allergy, 62, 976–990.CrossRefGoogle Scholar
  4. Dahl, A., Galán, C., Hajkova, L., Pauling, A., Sikoparija, B., Smith, M., et al. (2013). The onset, course and intensity of the pollen season. In M. Sofiev & K.-C. Bergmann (Eds.), Allergenic pollen. A review of the production, release, distribution and health impacts (pp. 29–70). Dordrecht: Springer.Google Scholar
  5. Dahl, A., & Strandhede, S.-O. (1996). Predicting the intensity of the birch pollen season. Aerobiologia, 12, 97–106. doi:10.1007/BF02248133.CrossRefGoogle Scholar
  6. Emberlin, J., Detandt, M., Gehrig, R., Jaeger, S., Nolard, N., & Rantio-Lehtimäki, A. (2002). Responses in the start of Betula (birch) pollen seasons to recent changes in spring temperatures across Europe. International Journal of Biometeorology, 46, 159–170. doi:10.1007/s00484-002-0139-x.CrossRefGoogle Scholar
  7. Emberlin, J., Mullins, J., Corden, J., Millington, W., Brooke, M., Savage, M., et al. (1997). The trend to earlier Birch pollen seasons in the UK: A biotic response to changes in weather conditions? Grana, 36, 29–33.CrossRefGoogle Scholar
  8. Emberlin, J., Savage, M., & Woodman, R. (1993). Annual variations in the concentrations of Betula pollen in the London area, 1961-1990. Grana, 32, 359–363.CrossRefGoogle Scholar
  9. Emberlin, J., Smith, M., Close, R., & Adams-Groom, B. (2007). Changes in the pollen seasons of the early flowering trees Alnus spp. and Corylus spp. in Worcester, United Kingdom, 1996–2005. International Journal of Biometeorology, 51, 181–191.CrossRefGoogle Scholar
  10. Emberlin, J. C., Norris-Hill, J., & Bryant, R. H. (1990). A calendar for tree pollen in London. Grana, 29, 301–310.CrossRefGoogle Scholar
  11. Franzén, L., & Dustfall, A. (1989). Episode on the Swedish West Coast, October 1987. Geografiska Annaler, Series A, Physical Geography, 71, 263–267.CrossRefGoogle Scholar
  12. Franzen, L., & Hjelmroos, M. (1988). A coloured snow episode on the Swedish west coast, January 1987. A quantitative study of air borne particles. Geografiska Annaler, Series A, Physical Geography, 70, 235–243. doi:10.2307/521075.CrossRefGoogle Scholar
  13. Frei, T. (1998). The effects of climate change in Switzerland 1969–1996 on airborne pollen quantities from hazel, birch and grass. Grana, 37, 172–179.CrossRefGoogle Scholar
  14. Frenguelli, G., Spieksma, F. T. M., Bricchi, E., Romano, B., Mincigrucci, G., Nikkels, A. H., et al. (1991). The influence of air temperature on the starting dates of the pollen season of Alnus and Populus. Grana, 30, 196–200.CrossRefGoogle Scholar
  15. Galán, C., Emberlin, J., Dominguez-Vilches, E., Bryant, R. H., & Villamandos, F. (1995). Comparative analysis of daily variations in the Gramineae pollen counts at Córdoba, Spain and London, UK. Grana, 34, 189–198.CrossRefGoogle Scholar
  16. Galán, C., Smith, M., Thibaudon, M., Frenguelli, G., Oteros, J., Gehrig, R., et al. (2014). Pollen monitoring: minimum requirements and reproducibility of analysis. Aerobiologia, 30, 385–395. doi:10.1007/s10453-014-9335-5.CrossRefGoogle Scholar
  17. Galán, C., Tormo, R., Cuevas, J., Infante, F., & Domínguez, E. (1991). Theoretical daily variation patterns of airborne pollen in southwest of Spain. Grana, 30, 201–209.CrossRefGoogle Scholar
  18. Gandalipova, E. (2003). Qualitative and quantitative composition of pollen in the atmosphere of Ufa, Ph.D. Thesis, Ufa (in Russian).Google Scholar
  19. Goldberg, C., Buch, H., Moseholm, L., & Weeke, E. V. (1988). Airborne pollen records in Denmark, 1977–1986. Grana, 27, 209–217.CrossRefGoogle Scholar
  20. Golovko, V. (2001). The study of the atmospheric aerosol pollen component in south of Western Siberia, Ph.D. Thesis, University of Novosibirsk (in Russian).Google Scholar
  21. Golovko, V. (2004). Ecological aspects of aeropalynology: An analytical review (Vol. 73). Novosibirsk: SPSTL SB RAS. (in Russian).Google Scholar
  22. Gorbarenko, E. V. (2016). Air temperature. In O. A. Shilovtseva & Y. I. Nezval’ (Eds.), Environmental and climate characteristics of the atmosphere in 2015 according to the measurements of the meteorological observatory of Moscow State University. Moscow: MAKS Press. [in press] (in Russian).Google Scholar
  23. Grewling, L., Jackowiak, B., Nowak, M., Uruska, A., & Smith, M. (2012). Variations and trends of birch pollen seasons during 15 years (1996–2010) in relation to weather conditions in Poznań (western Poland). Grana, 51, 280–292. doi:10.1080/00173134.2012.700727.CrossRefGoogle Scholar
  24. Gubankova, S. G. (1981). Aeropalynology in Moscow, Ph.D. Thesis, University of Moscow (in Russian).Google Scholar
  25. Hallsdóttir, M. (1999). Birch pollen abundance in Reykjavik, Iceland. Grana, 38, 368–373.CrossRefGoogle Scholar
  26. Hirst, J. M. (1952). An automatic volumetric spore trap. The Annals of Applied Biology, 39, 257–265.CrossRefGoogle Scholar
  27. Hjelmroos, M. (1991). Evidence of long-distance transport of Betula pollen. Grana, 30, 215–228.CrossRefGoogle Scholar
  28. Hjelmroos, M. (1992). Long-distance transport of Betula pollen grains and allergic symptoms. Aerobiologia, 8, 231–236.CrossRefGoogle Scholar
  29. Jäger, S., Nilsson, S., Berggren, B., Pessi, A.-M., Helander, M., & Ramford, H. (1996). Trends in some airborne tree pollen in the Nordic countries and Austria, 1980–1993: A comparison between Stockholm, Trondheim, Turku and Vienna. Grana, 35, 171–178.CrossRefGoogle Scholar
  30. Jäger, S., Spieksma, F. T. M., & Nolard, N. (1991). Fluctuations and trends in airborne concentrations of some abundant pollen types, monitored at Vienna, Leiden, and Brussels. Grana, 30, 309–312.CrossRefGoogle Scholar
  31. Janzen, D. H. (1971). Seed predation by animals. Annual Review of Ecology and Systematics, 2, 465–492.CrossRefGoogle Scholar
  32. Jato, V., Aira, M. J., Iglésia, M. I., Alcázar, P., Cervigón, P., Fernández, D., et al. (1999). Aeropalynology of birch (Betula sp.) in Spain. Polen, 10, 37–47.Google Scholar
  33. Jato, V., Rodríguez-Rajo, F. J., & Aira, M. J. (2007). Use of phenological and pollen-production data for interpreting atmospheric birch pollen curves. Annals of Agricultural and Environmental Medicine, 14, 271–280.Google Scholar
  34. Kelly, D. (1994). The evolutionary ecology of mast seeding. Trends in Ecology & Evolution, 9, 465–470.CrossRefGoogle Scholar
  35. Konstantinov, P. I. (2015). Atmospheric precipitation. In O. A. Shilovtseva & Y. I. Nezval’ (Eds.), Environmental and climate characteristics of the atmosphere in 2014 according to the measurements of the meteorological observatory of Moscow State University (pp. 47–50). Moscow: MAKS Press. (in Russian).Google Scholar
  36. Kostina, M. V., Yasinskaya, O. I., & Bityugova, G. V. (2015). Intensity of pollen dispersion depends on the structure of shoots bearing male catkins in drooping birch (Betula pendula Roth.). Bulletin of Moscow Society of Naturalists, Biological series, 120, 79–85.Google Scholar
  37. Laaidi, K. (2001). Predicting days of high allergenic risk during Betula pollination using weather types. International Journal of Biometeorology, 45, 124–132.CrossRefGoogle Scholar
  38. Latałowa, M., Miȩtus, M., & Uruska, A. (2002). Seasonal variations in the atmospheric Betula pollen count in Gdańsk (southern Baltic coast) in relation to meteorological parameters. Aerobiologia, 18, 33–43.CrossRefGoogle Scholar
  39. Maindonald, J. H. & Braun W. J. (2015). DAAG: Data analysis and graphics data and functions. R package version 1.22. http://CRAN.R-project.org/package=DAAG.
  40. Masaka, K. (2001). Modelling the masting behaviour of Betula platyphylla var. japonica using the resource budget model. Annals of Botany, 88, 1049–1055.CrossRefGoogle Scholar
  41. Mendez, J., Comtois, P., & Iglesias, I. (2005). Betula pollen: One of the most important aeroallergens in Ourense, Spain. Aerobiological studies from 1993 to 2000. Aerobiologia, 21, 115–124.CrossRefGoogle Scholar
  42. Morozova, O. V., & Meshkova, R. Y. (2006). Analysis of results of aeropalynology monitoring and uptake of pollinosis patients in Smolensk region. Russian Allergology Journal, 4, 11–16. (In Russian).Google Scholar
  43. Myszkowska, D. (2014). Predicting tree pollen season start dates using thermal conditions. Aerobiologia, 30, 307–321.CrossRefGoogle Scholar
  44. Myszkowska, D., Jenner, B., Puc, M., Stach, A., Nowak, M., Malkiewicz, M., et al. (2010). Spatial variations in the dynamics of the Alnus and Corylus pollen seasons in Poland. Aerobiologia, 26, 209–221.CrossRefGoogle Scholar
  45. Newnham, R. M., Sparks, T. H., Skjøth, C. A., Head, K., Adams-Groom, B., & Smith, M. (2013). Pollen season and climate: Is the timing of birch pollen release in the UK approaching its limit? International Journal of Biometeorology, 57, 391–400.CrossRefGoogle Scholar
  46. Nikolskaya, L., & Fedoseev, G. (1987). Palynological air characteristics and peculiarities of pollinosis in Leningrad. Immunologia, 3, 76–77. (in Russian).Google Scholar
  47. Nilsson, S., & Persson, S. (1981). Tree pollen spectra in the Stockholm region (Sweden), 1973–1980. Grana, 20, 179–182.CrossRefGoogle Scholar
  48. Oikonen, M. K., Hicks, S., Heino, S., & Rantio-Lehtimaki, A. (2005). The start of the birch pollen season in Finnish Lapland: separating non-local from local birch pollen and the implication for allergy sufferers. Grana, 44, 181–186. doi:10.1080/00173130510010602.CrossRefGoogle Scholar
  49. Pidek, I. A., Piotrowska, K., Kaszewski, B. M., Kalniņa, L., & Weryszko-Chmielewska, E. (2009). Airborne birch pollen in Poland and Latvia in the light of data obtained from aerobiological monitoring and Tauber traps in relation to mean air temperature. Acta Agrobotanica, 62, 77–90.CrossRefGoogle Scholar
  50. Piotrowska, K., & Kubik-Komar, A. (2012). The effect of meteorological factors on airborne Betula pollen concentrations in Lublin (Poland). Aerobiologia, 28, 467–479. doi:10.1007/s10453-012-9249-z.CrossRefGoogle Scholar
  51. Posevina, Y. M. (2011). Palynoecological monitoring of Ryazan city air, Ph.D. Thesis, Moscow (in Russian).Google Scholar
  52. R Core Team (2015). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.
  53. Ranta, H., Hokkanen, T., Linkosalo, T., Laukkanen, L., Bondestam, K., & Oksanen, A. (2008). Male flowering of birch: Spatial synchronization, year-to-year variation and relation of catkin numbers and airborne pollen counts. Forest Ecology and Management, 255, 643–650.CrossRefGoogle Scholar
  54. Ranta, H., Kubin, E., Siljamo, P., Sofiev, M., Linkosalo, T., Oksanen, A., et al. (2006). Long distance pollen transport cause problems for determining the timing of birch pollen season in Fennoscandia by using phenological observations. Grana, 45, 297–304. doi:10.1080/00173130600984740.CrossRefGoogle Scholar
  55. Rasmussen, A. (2002). The effects of climate change on the birch pollen season in Denmark. Aerobiologia, 18, 253–265.CrossRefGoogle Scholar
  56. Ritenberga, O., Sofiev, M., Kirillova, V., Kalnina, L., & Genikhovich, E. (2016). Statistical modelling of non-stationary processes of atmospheric pollution from natural sources: example of birch pollen. Agricultural and Forest Meteorology, 226–227, 96–107.CrossRefGoogle Scholar
  57. Rodríguez-Rajo, F. J., Frenguelli, G., & Jato, M. V. (2003). Effect of air temperature on forecasting the start of the Betula pollen season at two contrasting sites in the south of Europe (1995–2001). International Journal of Biometeorology, 47, 117–125.Google Scholar
  58. Severova, E. (2007). Long-transported pollen in aeropalynological spectrum of Moscow. In L. Kalnina & E. Luksevics (Eds.), Volume of abstracts, pollen monitoring programme, 6th international meeting, 3–9 June 2007 (pp. 74–77). Riga: University of Latvia.Google Scholar
  59. Siljamo, P., Sofiev, M., Severova, E., Ranta, H., Kukkonen, J., Polevova, S., et al. (2008). Sources, impact and exchange of early-spring birch pollen in the Moscow region and Finland. Aerobiologia, 24, 211–230. doi:10.1007/s10453-008-9100-8.CrossRefGoogle Scholar
  60. Siljamo, P., Sofiev, M., Severova, E., Ranta, H., & Polevova, S. (2007). On influence of long-range transport of pollen grains onto pollinating seasons. Developments in environmental science. In C. Borrego & E. Renner (Eds.), Air polution modelling and its applications XVIII (pp. 708–716). Amsterdam: Elsevier. doi:10.1016/S1474-8177(07)06074-3.CrossRefGoogle Scholar
  61. Smith, M., Emberlin, J., Stach, A., Czarnecka-Operacz, M., Jenerowicz, D., & Silny, W. (2007). Regional importance of Alnus pollen as an aeroallergen: A comparative study of Alnus pollen counts from Worcester (UK) and Poznań (Poland). Annals of Agricultural and Environmental Medicine, 14, 123–128.Google Scholar
  62. Smith, M., Jäger, S., Berger, U., Šikoparija, B., Hallsdottir, M., Sauliene, I., et al. (2014). Geographic and temporal variations in pollen exposure across Europe. Allergy, 69, 913–923.CrossRefGoogle Scholar
  63. Spieksma, F. T. M., Emberlin, J. C., Hjelmroos, M., Jäger, S., & Leuschner, M. (1995). Atmospheric birch (Betula) pollen in Europe: Trends and fluctuations in annual quantities and starting dates of the seasons. Grana, 34, 51–57.CrossRefGoogle Scholar
  64. Stach, A., Emberlin, J., Adams-Groom, B., Smith, M., & Myszkowska, D. (2008a). Factors that determine the severity of Betula spp. pollen seasons in Poland (Poznań and Cracow) and the United Kingdom (Worcester and London). International Journal of Biometeorology, 52, 311–321.CrossRefGoogle Scholar
  65. Stach, A., Smith, M., Baena, J. C. P., & Emberlin, J. (2008b). Long-term and short-term forecast models for Poaceae (grass) pollen in Poznan Poland, constructed using regression analysis. Environmental and Experimental Botany, 62, 323–332.CrossRefGoogle Scholar
  66. StatSoft, Inc. (2013). Electronic statistics textbook. Tulsa, OK: StatSoft. http://www.statsoft.com/textbook/.
  67. Territorial Unit of the Federal Statistical Service of the City of Moscow (2016). http://moscow.gks.ru/wps/wcm/connect/rosstat_ts/moscow/ru/statistics/population/.
  68. Ugolotti, M., Pasquarella, C., Vitali, P., Smith, M., & Albertini, R. (2015). Characteristics and trends of selected pollen seasons recorded in Parma (Northern Italy) from 1994 to 2011. Aerobiologia, 31, 341–352. doi:10.1007/s10453-015-9368-4.CrossRefGoogle Scholar
  69. Veriankaitė, L., Siljamo, P., Sofiev, M., Sauliene, I., & Kukkonen, J. (2010). Modelling analysis of source regions of long-range transported birch pollen that influences allergenic seasons in Lithuania. Aerobiologia, 26, 47–62. doi:10.1007/s10453-009-9142-6.CrossRefGoogle Scholar
  70. Wallin, J.-E., Segerström, U., Rosenhall, L., Bergmann, E., & Hjelmroos, M. (1991). Allergic symptoms caused by long-distance transported birch pollen. Grana, 30, 265–268. doi:10.1080/00173139109427809.CrossRefGoogle Scholar
  71. Zhang, Y., Bielory, L., & Georgopoulos, P. G. (2014). Climate change effect on Betula (birch) and Quercus (oak) pollen season in the United States. International Journal of Biometeorology, 58, 909–919. doi:10.1007/s00484-013-0674-7.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Department of Higher Plants, Faculty of BiologyM.V. Lomonosov Moscow State UniversityMoscowRussia

Personalised recommendations