, Volume 32, Issue 1, pp 139–156 | Cite as

Atmospheric concentrations of selected allergenic fungal spores in relation to some meteorological factors, in Timişoara (Romania)

  • Nicoleta IanoviciEmail author


Present investigation was undertaken to study the dynamics of relationships between atmospheric fungal spores and meteorological factors in western Romania. The airborne spore sampling was carried out by employing volumetric sampling. A total of nine meteorological parameters were selected for this investigation. During 2008–2010, it was found the same pattern of behaviour in the atmosphere for selected spore types (Alternaria, Cladosporium, Pithomyces, Epicoccum and Torula). The spores occurred in the air throughout the whole year, but maximum concentrations were reached in summer. Cladosporium and Alternaria peak levels were observed in June. Epicoccum peak value was found in September. The relationships between airborne spore concentrations and environmental factors were assessed using the analysis of Spearman’s rank correlations and multiple linear regressions. Spearman’s rank correlation analysis revealed that maximum, minimum and mean temperature, and number of sunshine hours were strongly (p < 0.01) and directly proportional to the concentration of all analysed fungal spores. Negative and significant correlations were with daily mean relative humidity. The variance explained percentage by regression analyses varied between 30.6 and 39.6 % for Alternaria and Cladosporium airborne spores. Statistical methods used in this study are complementary and confirmed stable dependence of Alternaria and Cladosporium spore concentrations on meteorological factors. The climate change parameters either increased temperatures, changed precipitation regimes or a combination of both affected allergenic fungal spore concentrations in western Romania. This study demonstrates the need for investigations throughout the year, from month to month, regarding the correct interpretation of airborne spore relationships with meteorological parameters.


Biomonitoring Climate change Airborne mycoflora 


  1. Abu-Dieyeh, M. H., Barham, R., Abu-Elteen, K., Al-Rashidi, R., & Shaheen, I. (2010). Seasonal variation of fungal spore populations in the atmosphere of Zarqa area, Jordan. Aerobiologia, 26(4), 263–276.CrossRefGoogle Scholar
  2. Adhikari, A., Reponen, T., Grinshpun, S. A., Martuzevicius, D., & LeMasters, G. (2006). Correlation of ambient inhalable bioaerosols with particulate matter and ozone: A two-year study. Environmental Pollution, 140, 16–28.CrossRefGoogle Scholar
  3. Aira, M. J., Rodríguez-Rajo, F. J., & Jato, V. (2008). 47 annual records of allergenic fungi spore: Predictive models from the NW Iberian Peninsula. Annals of Agricultural and Environmental Medicine, 15, 91–98.Google Scholar
  4. Almaguer, M., Aira, M.-J., Rodriguez-Rajo, F. J., & Rojas, T. (2014). Temporal dynamics of airborne fungi in Havana (Cuba) during dry and rainy seasons: Influence of meteorological parameters. International Journal of Biometeorology, 58(7), 1459–1470.CrossRefGoogle Scholar
  5. Angulo-Romero, J., Mediavilla-Molina, A., & Domınguez-Vilches, E. (1999). Conidia of Alternaria in the atmosphere of the city of Cordoba, Spain in relation to meteorological parameters. International Journal of Biometeorology, 43, 45–49.CrossRefGoogle Scholar
  6. Artaç, H., Kizilpinar Temizer, I., Özdemir, H., Pekcan, S., Doğan, C., & Reisli, I. (2014). Alternaria and Cladosporium spores in the spores in the atmosphere of Konya and their relationship with meteorological factors. Asthma Allergy Immunology, 12, 130–139.Google Scholar
  7. Astray, G., Rodrıguez-Rajo, F. J., Ferreiro-Lage, J. A., Fernandez-Gonzalez, M., Jato, V., & Mejuto, J. C. (2010). The use of artificial neural networks to forecast biological atmospheric allergens or pathogens only as Alternaria Spores. Journal of Environmental Monitoring, 12, 2145–2152.CrossRefGoogle Scholar
  8. Bavbek, S., Erkekol, F. O., Ceter, T., Mungan, D., Ozer, F., Pinar, M., & Misirligil, Z. (2006). Sensitization to Alternaria and Cladosporium in patients with respiratory allergy and outdoor counts of mold spores in Ankara atmosphere, Turkey. Journal of Asthma, 43(6), 421–426.CrossRefGoogle Scholar
  9. Bisht, V., Arora, N., Singh, B. P., Gaur, S. N., & Sridhara, S. (2004). Purification and characterization of a major cross-reactive allergen from Epicoccum purpurascens. International Archives of Allergy and Immunology, 133(3), 217–224.CrossRefGoogle Scholar
  10. Calabria, C. W., Dice, J. P., & Hagan, L. L. (2007). Prevalence of positive skin test responses to 53 allergens in patients with rhinitis symptoms. Allergy and Asthma Proceedings, 28(4), 442–448.CrossRefGoogle Scholar
  11. Cecchi, L., D’Amato, G., Ayres, J. G., Galan, C., Forastiere, F., Forsberg, B., et al. (2010). Projections of the effects of climate change on allergic asthma: The contribution of aerobiology. Allergy,. doi: 10.1111/j.1398-9995.2010.02423.x.Google Scholar
  12. Celenk, S., Bicakci, A., Erkan, P., & Aybeke, M. (2007). Cladosporium Link ex Fr. and Alternaria Nees ex Fr. spores in the atmosphere of Edirne. Journal of Biological and Environmental Sciences, 2007(3), 127–130.Google Scholar
  13. Corden, J. M., & Millington, J. J. (2001). The long-term trends and seasonal variation of the aeroallergen Alternaria in Derby, UK. Aerobiologia, 17, 127–136.CrossRefGoogle Scholar
  14. Cosmulescu, S., Baciu, A., Cichi, M., & Gruia, M. (2010). The effect of climate changes on phenological phases in plum tree (Prunus domestica L.) in South-Western Romania. South Western Journal of Horticulture, Biology and Environment, 1(1), 9–20.Google Scholar
  15. Cuculeanu, V., Marica, A., & Simota, C. (1999). Climate change impact on agricultural crops and adaptation options in Romania. Climatic Research, 12, 153–160.CrossRefGoogle Scholar
  16. Cuculeanu, V., Tuinea, P., & Balteanu, D. (2002). Climate change impacts in Romania: Vulnerability and adaptation options. GeoJournal, 57, 203–209.CrossRefGoogle Scholar
  17. Damialis, A., & Gioulekas, D. (2006). Airborne allergenic fungal spores and meteorological factors in Greece: Forecasting possibilities. Grana, 45(2), 122–129.CrossRefGoogle Scholar
  18. Damialis, A., Mohammad, A. B., Halley, J. M., & Gange, A. C. (2015a). Fungi in a changing world: Growth rates will be elevated, but spore production may decrease in future climates. International Journal of Biometeorology, 59(9), 1157–1167.CrossRefGoogle Scholar
  19. Damialis, A., Vokou, D., Gioulekas, D., & Halley, J. M. (2015b). Long-term trends in airborne fungal-spore concentrations: A comparison with pollen. Fungal Ecology, 13, 150–156.CrossRefGoogle Scholar
  20. Després, V. R., Huffman, J. A., Burrows, S. M., Hoose, C., Safatov, A. S., Buryak, G., et al. (2012). Primary biological aerosol particles in the atmosphere: A review. Tellus B,. doi: 10.3402/tellusb.v64i0.15598.Google Scholar
  21. DG AGRI—European Commission Directorate-General for Agriculture and Rural Development. (2008). Impacts of climate change on European forests and options for adaptation, Final report.Google Scholar
  22. Eduard, W. (2009). Fungal spores: A critical review of the toxicological and epidemiological evidence as a basis for occupational exposure limit setting. Critical Reviews in Toxicology, 39(10), 799–864.CrossRefGoogle Scholar
  23. Escuredo, O., Seijo, M. C., Fernández-González, M., & Iglesias, I. (2011). Effects of meteorological factors on the levels of Alternaria spores on a potato crop. International Journal of Biometeorology, 55(2), 243–252.CrossRefGoogle Scholar
  24. Froelich, R. C., & Snow, G. A. (1986). Predicting site hazard to fusiform rust. Forest Science, 32, 21–35.Google Scholar
  25. Grinn‐Gofroń, A. (2008). The variation in spore concentrations of selected fungal taxa associated with weather conditions in Szczecin, Poland, 2004–2006. Grana, 47(2), 139–146.CrossRefGoogle Scholar
  26. Grinn-Gofroń, A. (2009). The spores of Alternaria in aeroplankton and its relationships with the meteorological factors. Acta Agrobotanica, 62(1), 3–8.CrossRefGoogle Scholar
  27. Grinn-Gofroń, A., & Mika, A. (2008). Selected airborne allergenic fungal spores and meteorological factors in Szczecin, Poland, 2004–2006. Aerobiologia, 24, 89–97.CrossRefGoogle Scholar
  28. Grinn-Gofroń, A., Strzelczak, A., & Wolski, T. (2011). The relationships between air pollutants, meteorological parameters and concentration of airborne fungal spores. Environmental Pollution, 159, 602–608.CrossRefGoogle Scholar
  29. Grinn-Gorfroń, A., Strzelczak, A., Stępalska, D., & Myszkowska, D. (2015). A 10-year study of Alternaria and Cladosporium in two Polish cities (Szczecin and Cracow) and relationship with the meteorological parameters. Aerobiologia,. doi: 10.1007/s10453-015-9411-5.Google Scholar
  30. Herrero, B., & Zaldivar, P. (1997). Effects of meteorological factors on the levels of Alternaria and Cladosporium spore in the atmosphere of Palencia, 1990–1992. Grana, 36, 180–184.CrossRefGoogle Scholar
  31. Hjelmroos, M. (1993). Relationship between airborne fungal spore presence and weather variables, Cladosporium and Alternaria. Grana, 32, 40–47.CrossRefGoogle Scholar
  32. Ho, H.-M., Rao, C. Y., Hsu, H.-H., Chiu, Y.-H., Liu, C.-M., & Chao, H. J. (2005). Characteristics and determinants of ambient fungal spores in Hualien, Taiwan. Atmospheric Environment, 39, 5839–5850.CrossRefGoogle Scholar
  33. Ianovici, N., Birsan, M.-V., Tudorică, D., & Baliţa, A. (2013a). Fagales pollen in the atmosphere of Timişoara, Romania (2000–2007). Annals of West University of Timisoara, ser. Biology, 16(2), 115–134.Google Scholar
  34. Ianovici, N., Daraba, A., Postelnicu, M., Kiss, I., & Matis, A. (2007). Studiul bioparticulelor aeropurtate in Timişoara—Romania. Lucrări Ştiinţifice Seria Agronomie, 50(2), 501–506.Google Scholar
  35. Ianovici, N., Dumbravă-Dodoacă, M., Filimon, M. N., & Sinitean, A. (2011). A comparative aeromycological study of the incidence of allergenic spores in outdoor environment. Analele Universităţii din Oradea, Fascicula Biologie, XVIII, 88–98.Google Scholar
  36. Ianovici, N., Faur, A. (2003). Preliminary study of some atmospheric fungi in Timişoara, In The 5th international symposium “young people and multidisciplinary research”, section environmental protection, 6–7 November, Timisoara, Romania, pp. 624–629.Google Scholar
  37. Ianovici, N., Faur, A., & Rusza, A. (2004). Quantitative and qualitative study on the pneumoallergenic bioparticles during July 2003. Annals of West University of Timisoara, ser. Biology, 7, 25–34.Google Scholar
  38. Ianovici, N., Maria, C., Răduţoiu, M. N., Haniş, A., & Tudorică, D. (2013b). Variation in airborne fungal spore concentrations in four different microclimate regions in Romania. Notulae Botanicae Horti Agrobotanici, 41(2), 450–457.Google Scholar
  39. Ianovici, N., Panaitescu Bunu, C., & Brudiu, I. (2013c). Analysis of airborne allergenic pollen spectrum for 2009 in Timisoara, Romania. Aerobiologia, 29(1), 95–111.CrossRefGoogle Scholar
  40. Ianovici, N., Popescu, A., & Nemeş, C. (2008). Aeromycological monitoring of Cladosporium spores in Timisoara. Annals of West University of Timisoara, ser. Biology, 11, 1–8.Google Scholar
  41. Ianovici, N., & Tudorică, D. (2009). Aeromycoflora in outdoor environment of Timisoara City (Romania). Notulae Scientia Biologicae, 1(1), 21–28.Google Scholar
  42. Jones, A. M., & Harrison, R. M. (2004). The effect of meteorological factors on atmospheric bioaerosols concentrations—A review. Science of the Total Environment, 326, 151–180.CrossRefGoogle Scholar
  43. Kasprzyk, I. (2008). Aeromycology. Main research fields of interest during the last 25 years. Annals of Agricultural and Environmental Medicine, 15, 1–7.Google Scholar
  44. Konopińska, A. (2004). Monitoring of Alternaria Ness and Cladosporium Link airborne spores in Lublin (Poland) in 2002. Annals of Agricultural and Environmental Medicine, 11, 347–349.Google Scholar
  45. Kruczek, A. (2014). Mycological analysis of air in selected rooms of the University of Szczecin—A pilot project. Acta Agrobotanica, 67(2), 51–56.CrossRefGoogle Scholar
  46. Kurkela, T. (1997). The number of Cladosporium conidia in the air in different weather conditions. Grana, 36, 54–61.CrossRefGoogle Scholar
  47. Levetin, E., & Dorsey, K. (2006). Contribution of leaf surface fungi to the air spora. Aerobiologia, 22, 3–12.CrossRefGoogle Scholar
  48. Magyar, D., Frenguelli, G., Bricchi, E., Tedeschini, E., Csontos, P., Li, D. W., et al. (2009). The biodiversity of air spora in an Italian vineyard. Aerobiologia, 25, 99–109.CrossRefGoogle Scholar
  49. Marchiso, V. F., & Airaudi, D. (2001). Temporal trends of the airborne fungi and their functional relations with environment in a suburban site. Mycologia, 93, 831–840.CrossRefGoogle Scholar
  50. Marica, A., & Busuioc, A. (2004). The potential of climate change on the main components of water balance relating to maize crop. Roumanian Journal of Meteorology, 6(1–2), 40–49.Google Scholar
  51. Marin, L., Birsan, M. V., Bojariu, R., Dumitrescu, A., Micu, D. M., & Manea, A. (2014). Carpathian Journal of Earth and Environmental Sciences, 9(4), 253–258.Google Scholar
  52. Mateescu, E., & Alexandru, D. (2010). Management recommendations and options to improve crop systems and yields on south-east Romania in the context of regional climate change scenarios over 2020–2050. Scientific Papers, UASVM Bucharest, Series A, 53, 328–334.Google Scholar
  53. Mircov, V. D., Fericeanu, M., Ciorsac, A., & Isvoran, A. (2014). A non-random variation of monthly average temperatures and precipitation quantities in Romania during the period 2009–2012. Annals of West University of Timişoara, ser. Biology, 17(1), 33–38.Google Scholar
  54. Mitakakis, T., Ong, E. K., Stevens, A., Guest, D., & Knox, R. B. (1997). Incidence of Cladosporium, Alternaria and total fungal spores in the atmosphere of Melbourne (Australia) over 3 years. Aerobiologia, 13, 83–90.CrossRefGoogle Scholar
  55. Munuera Giner, M., Carrion Garcia, J. S., & Navarro Camacho, C. (2001). Airborne Alternaria spores in SE Spain (1993–1998). Grana, 40, 111–118.CrossRefGoogle Scholar
  56. Nolard, N., Beguin, H., & Chausser, C. (2001). Mold allergy: 25 Years of indoor and outdoor studies in Belgium. Allergy and Immunology, 33, 101–102.Google Scholar
  57. Okten, S. S., Asan, A., Tungan, Y., & Türe, M. (2005). Airborne fungal concentrations in east patch of Edirne City (Turkey) in autumn using two sampling methods. Trakya University Journal of Science, 6, 97–106.Google Scholar
  58. Oliveira, M., Abreu, I., Ribeiro, H., & Delgado, L. (2007). Fungal spores in the atmosphere in the city of Porto and its allergological implications. Revista Portugesa de Immunoalergologia, 15(1), 61–85.Google Scholar
  59. Palmas, F., & Cosentino, S. (1990). Comparison between fungal airspore concentration two different sites in the South of Sardinia. Grana, 29, 87–95.CrossRefGoogle Scholar
  60. Păltineanu, C., Mihăilescu, I. F., Seceleanu, I., Dragotă, C. S., & Vasenciuc, F. (2007). Using aridity indexes to describe some climate and soil features in Eastern Europe: A Romanian case study. Theoretical and Applied Climatology, 90, 263–274.CrossRefGoogle Scholar
  61. Rapiejko, P., Lipiec, A., Wojdas, A., & Jurkiewicz, D. (2004). Threshold pollen concentration necessary to evoke allergic symptoms. International Review of Allergology and Clinical Immunology, 10(3), 91–94.Google Scholar
  62. Reid, C. E., & Gamble, J. L. (2009). Aeroallergens, allergic disease, and climate change: Impacts and adaptation. EcoHealth, 6, 458–470.CrossRefGoogle Scholar
  63. Rizzi-Longo, L., Pizzulin-Sauli, M., & Ganis, P. (2009). Seasonal occurrence of Alternaria (1993–2004) and Epicoccum (1994–2004) spores in Trieste (NE Italy). Annals of Agricultural and Environmental Medicine, 16, 63–70.Google Scholar
  64. Rosas, I., Escamilla, B., Calderón, C., & Mosiño, P. (1990). The daily variations of airborne fungal spores in Mexico City. Aerobiologia, 6, 153–158.CrossRefGoogle Scholar
  65. Rowan, N. J., Johnstone, C. M., McLean, R. C., Anderson, J. G., & Clarke, J. A. (1999). Prediction of toxigenic fungal growth in buildings by using a novel modelling system. Applied and Environment Microbiology, 65, 4814–4821.Google Scholar
  66. Rusu, T., & Moraru, P. I. (2015). Impact of climate change on crop land and technological recommendations for the main crops in Transylvanian Plain, Romania. Romanian Agricultural Research, 32, 103–111.Google Scholar
  67. Sadyś, M., Kennedy, R., & West, J. S. (2015a). Potential impact of climate change on fungal distributions: Analysis of 2 years of contrasting weather in the UK. Aerobiologia,. doi: 10.1007/s10453-015-9402-6.Google Scholar
  68. Sadyś, M., Strzeczak, A., Grinn‐Gofroń, A., & Kennedy, R. (2015b). Application of redundancy analysis for aerobiological data. International Journal of Biometeorology, 59(1), 25–36.CrossRefGoogle Scholar
  69. Sakiyan, N., & Inceoglu, O. (2003). Atmospheric concentrations of Cladosporium Link and Alternaria Nées spores in Ankara and the effects of meterological factors. Turkish Journal of Botany, 27, 77–81.Google Scholar
  70. Sârbu, A., Anastasiu, P., & Smarandache, D. (2014). Potential impact of climate change on alpine habitats from Bucegi Natural Park, Romania. In S. Rannow & M. Neubert (Eds.), Managing protected areas in central and eastern Europe under climate change (pp. 259–267). Dordrecht: Springer.CrossRefGoogle Scholar
  71. Ščevková, J., Dušička, J., Mičieta, K., & Somorčík, J. (2015). The effects of recent changes in air temperature on trends in airborne Alternaria, Epicoccum and Stemphylium spore seasons in Bratislava (Slovakia). Aerobiologia,. doi: 10.1007/s10453-015-9412-4.Google Scholar
  72. Şen, B., & Asan, A. (2001). Airborne fungi in vegetable growing areas of Edirne, Turkey. Aerobiologia, 17, 69–75.CrossRefGoogle Scholar
  73. Stennett, P. J., & Beggs, P. J. (2004). Alternaria spores in the atmosphere of Sydney, Australia, and relationships with meteorological factors. International Journal of Biometeorology, 49, 98–105.CrossRefGoogle Scholar
  74. Stępalska, D., & Wołek, J. (2005). Variation in fungal spore concentrations of selected taxa associated to weather conditions in Cracow, Poland, in 1997. Aerobiologia, 21, 43–52.CrossRefGoogle Scholar
  75. Talley, S. M., Coley, P. D., & Kursar, T. A. (2002). The effects of weather on fungal abundance and richness among 25 communities in the Intermountain West. BMC Ecology, 2, 7. doi: 10.1186/1472-1016785-2-7.CrossRefGoogle Scholar
  76. Targonski, P. V., Persky, V. W., & Ramakrishnan, V. (1995). Effect of environmental molds on risk of death from asthma during the pollen season. Journal of Allergy and Clinical Immunology, 95, 955–961.CrossRefGoogle Scholar
  77. Troutt, C., & Levetin, E. (2001). Correlation of spring spore concentrations and meteorological conditions in Tulsa, Oklahoma. International Journal of Biometeorology, 45, 64–74.CrossRefGoogle Scholar
  78. Vélez-Pereira, A. M., De Linares, C., Delgado, R., & Belmonte, J. (2015). Temporal trends of the airborne fungal spores in Catalonia (NE Spain), 1995–2013. Aerobiologia,. doi: 10.1007/s10453-015-9410-6.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Department of Biology and Chemistry, Faculty of Chemistry, Biology and GeographyWest University of TimisoaraTimisoaraRomania

Personalised recommendations