, Volume 32, Issue 3, pp 469–480 | Cite as

Bacterial aerosols in an urban nursery school in Gliwice, Poland: a case study

  • Ewa Brągoszewska
  • Anna MainkaEmail author
  • Jozef S. Pastuszka


This work presents the results of the study of airborne bacteria in a kindergarten in Gliwice, Upper Silesia, Poland. In this study, the samples of bioaerosols were collected using six-stage Andersen cascade impactor (with aerodynamic cutoff diameters 7.0, 4.7, 3.3, 2.1, 1.1, and 0.65 μm). The level of culturable bacterial aerosols indoors was about 3000 CFU m−3—six to eight times higher than outdoors. In the classrooms, respirable bacterial particles, <4.7 µm, contributed up to 85 % of the total number of culturable bacteria, increasing the possible adverse health effects due to their inhalation. The identification of the bacterial species showing the dominance of gram-positive cocci in the indoor environment and non-sporing gram-positive rods in the outdoor air indicates that most of the bacteria present in the studied kindergarten are human origin. Using the obtained data, the nursery school exposure dose (NSED) of bioaerosols was estimated for the children and personnel of this kindergarten (nursery school). The highest value of NSED was obtained for younger children (930 CFU kg−1) compared to older children (about 600 CFU kg−1) and to the kindergarten staff (about 300 CFU kg−1). This result suggests the elevated risk of adverse health effects in younger children exposed to the bioaerosols in the kindergarten, including infections.


Bioaerosols Size distribution Bacteria identification Preschool 



The authors would like to thank the support of the principals and staff of the nursery school that participated in the study. The cooperation with Professor Ewa Talik from the Institute of Physics, University of Silesia in Katowice, Poland, in preparation of the micrographs of the samples of bacteria is appreciated. The authors are grateful to Dr. Konrad Kaczmarek from the Institute of Mathematics, Silesian University of Technology, for helping in the statistical calculations. The research leading to these results has received funding from the Polish-Norwegian Research Programme operated by the National Centre for Research and Development under the Norwegian Financial Mechanism 2009–2014 in the frame of Project Contract No Pol Nor/210247/20/2013.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.


  1. Ashmore, M. R., & Dimitroulopoulou, C. (2009). Personal exposure of children to air pollution. Atmospheric Environment, 43(1), 128–141. doi: 10.1016/j.atmosenv.2008.09.024.CrossRefGoogle Scholar
  2. Aydogdu, H., Asan, A., & Tatman Otkun, M. (2010). Indoor and outdoor airborne bacteria in child day-care centers in Edirne City (Turkey), seasonal distribution and influence of meteorological factors. Environmental Monitoring and Assessment, 164, 53–66. doi: 10.1007/s10661-009-0874-0.CrossRefGoogle Scholar
  3. Brągoszewska, E. (2014). Bacterial aerosol occuring in the atmospheric air in Gliwice and its share of the total human exposure to the bacteria absorbed by inhalation. PhD Thesis.Google Scholar
  4. Branco, P. T. B. S., Alvim-Ferraz, M. C. M., Martins, F. G., & Sousa, S. I. V. (2014). Indoor air quality in urban nurseries at Porto city: Particulate matter assessment. Atmospheric Environment, 84, 133–143. doi: 10.1016/j.atmosenv.2013.11.035.CrossRefGoogle Scholar
  5. Canha, N., Almeida, S. M., Freitas, M. C., Täubel, M., & Hänninen, O. (2013). Winter ventilation rates at primary schools: comparison between Portugal and Finland. Journal of Toxicology and Environmental Health, Part A, 76(6), 1–8.CrossRefGoogle Scholar
  6. Daisey, J. M., Angell, W. J., & Apte, M. G. (2003). Indoor air quality, ventilation and health symptoms in schools: an analysis of existing information. Indoor Air, 13, 53–64. doi: 10.1034/j.1600-0668.2003.00153.x.CrossRefGoogle Scholar
  7. Douwes, J., Thorne, P., Pearce, N., & Heederik, D. (2003). Bioaerosol health effects and exposure assessment: Progress and prospects. Annals of Occupational Hygiene, 47(3), 187–200. doi: 10.1093/annhyg/meg032.CrossRefGoogle Scholar
  8. Dumała, S. M., & Dudzińska, M. R. (2013). Microbiological indoor air quality in Polish schools. Annual Set The Environment Protection, 15, 231–244.Google Scholar
  9. DzU. (1991). The Education Act of 7 September 1991. DzU1991.95.425., Pub. L. No. 425.Google Scholar
  10. DzU. (2003). Minister of National Education and Sport of 31 December 2002. On safety and hygiene in public and private schools and institutions. DzU2003.6., Pub. L. No. 69.Google Scholar
  11. EU. Council Directive of 12 June 1989 on the introduction of measures to encourage improvements in the safety and health of workers at work., L 269 Official Journal of the European Communities 1–15 (2000).Google Scholar
  12. Górny, R., Cyprowski, M., Lawniczek-Walczyk, A., Gołofit-Szymczak, M., & Zapór, L. (2011). Biohazards in the indoor environment-a role for threshold limit values in exposure assessment. In M. R. Dudzińska (Ed.), Management of indoor air quality (pp. 1–20). London: Taylor & Francis Group, CRC Press.CrossRefGoogle Scholar
  13. Górny, R., Gołofit-Szymczak, M., & Agata, S. (2014). Biological agents in kindergartens [in Polish]. Bezpieczeństwo Pracy. Nauka i Praktyka, 2(509), 16–20.Google Scholar
  14. Henningson, E. W., Lundquist, M., Larsson, E., Sandström, G., & Forsman, M. (1997). A comparative study of different methods to determine the total number and the survival ratio of bacteria in aerobiological samples. Journal of Aerosol Science, 28(3), 459–469. doi: 10.1016/S0021-8502(96)00447-8.CrossRefGoogle Scholar
  15. ISO 11133. (2014). Microbiology of food, animal feed and water – Preparation, production, storage and performance testing of culture media.Google Scholar
  16. Johnson-Restrepo, B., & Kannan, K. (2009). An assessment of sources and pathways of human exposure to polybrominated diphenyl ethers in the United States. Chemosphere, 76(4), 542–548. doi: 10.1016/j.chemosphere.2009.02.068.CrossRefGoogle Scholar
  17. Karottki, D., Spilak, M., Frederiksen, M., Jovanovic Andersen, Z., Madsen, A., Ketzel, M., et al. (2015). Indoor and outdoor exposure to ultrafine, fine and microbiologically derived particulate matter related to cardiovascular and respiratory effects in a panel of elderly urban citizens. International Journal of Environmental Research and Public Health, 12(2), 1667–1686. doi: 10.3390/ijerph120201667.CrossRefGoogle Scholar
  18. Kim, K. Y., & Kim, C. N. (2007). Airborne microbiological characteristics in public buildings of Korea. Building and Environment, 42(5), 2188–2196. doi: 10.1016/j.buildenv.2006.04.013.CrossRefGoogle Scholar
  19. Kim, N. Y., Kim, Y. R., Kim, M. K., Cho, D. W., & Kim, J. (2007). Isolation and characterization of airborne bacteria and fungi in indoor environment of elementary schools. Korean Journal of Microbiology, 43(3), 193–200.Google Scholar
  20. Kotzias, D. (2005). Indoor air and human exposure assessment—Needs and approaches. Experimental and Toxicologic Pathology, 57, 5–7. doi: 10.1016/j.etp.2005.05.002.CrossRefGoogle Scholar
  21. Kozielska, B. (2013). Concentration of benzene and its alkyl derivatives in Gliwice air. Archives of Environmental Protectiones of Waste Management and Environmental Protection, 15(3), 81–88.Google Scholar
  22. Latif, M. T., Yong, S. M., Saad, A., Mohamad, N., Baharudin, N. H., Mokhtar, M. Bin, & Tahir, N. M. (2014). Composition of heavy metals in indoor dust and their possible exposure: A case study of preschool children in Malaysia. Air Quality, Atmosphere and Health, 7, 181–193. doi: 10.1007/s11869-013-0224-9.CrossRefGoogle Scholar
  23. Lee, S. C., & Chang, M. (1986). Indoor and outdoor air quality investigation at schools in Hong Kong. Department of State publication. Background notes series, 41, 1–4.Google Scholar
  24. Moon, K. W., Huh, E. H., & Jeong, H. C. (2014). Seasonal evaluation of bioaerosols from indoor air of residential apartments within the metropolitan area in South Korea. Environmental Monitoring and Assessment, 186(4), 2111–2120. doi: 10.1007/s10661-013-3521-8.CrossRefGoogle Scholar
  25. Nasir, Z. A., & Colbeck, I. (2010). Assessment of bacterial and fungal aerosol in different residential settings. Water, Air, and Soil Pollution, 211, 367–377. doi: 10.1007/s11270-009-0306-3.CrossRefGoogle Scholar
  26. Ott, W. (2006). Exposure analysis. Taylor & Francis, London.,. doi: 10.1201/9781420012637.pt1.Google Scholar
  27. Pastuszka, J. S., Marchwińska-Wyrwał, E., & Wlazło, A. (2005). Bacterial aerosol in silesian hospitals: Preliminary results. Polish Journal of Environmental Studies, 14(6), 883–890.Google Scholar
  28. Pastuszka, J. S., Paw, U. K. T., Lis, D. O., Wlazło, A., & Ulfig, K. (2000). Bacterial and fungal aerosol in indoor environment in Upper Silesia, Poland. Atmospheric Environment, 34, 3833–3842. doi: 10.1016/S1352-2310(99)00527-0.CrossRefGoogle Scholar
  29. Pastuszka, J. S., Wlazło, A., Łudzeń-Izbińska, B., & Pastuszka, K. (2004). Bacterial and fungal aerosol in the school sport hall [in Polish]. Ochrona Powietrza i Problemy Odpadów, 38, 62–66.Google Scholar
  30. Patelarou, E., Tzanakis, N., & Kelly, F. J. (2015). Exposure to indoor pollutants and wheeze and asthma development during early childhood. International Journal of Environmental Research and Public Health, 12(4), 3993–4017. doi: 10.3390/ijerph120403993.CrossRefGoogle Scholar
  31. Pegas, P. N., Evtyugina, M. G., Alves, C. A., Nunes, T., Cerqueira, M., Franchi, M., et al. (2010). Outdoor/indoor air quality in primary schools in Lisbon: A preeliminary study. Quimica nova, 33(5), 1145–1149.CrossRefGoogle Scholar
  32. PN-EN 12322. (2005). In vitro diagnostic medical devices. Culture media for microbiology. Performance criteria for culture media.Google Scholar
  33. Salleh, N. M., Kamaruzzaman, S. N., Sulaiman, R., & Mahbob, N. S. (2011). Indoor air quality at school: Ventilation rates and it impacts towards children: A review. In 2nd International Conference on Evironmental Science and Technology, 6, 418–422.Google Scholar
  34. Santamouris, M., Synnefa, A., Asssimakopoulos, M., Livada, I., Pavlou, K., Papaglastra, M., et al. (2008). Experimental investigation of the air flow and indoor carbon dioxide concentration in classrooms with intermittent natural ventilation. Energy and Buildings, 40, 1833–1843. doi: 10.1016/j.enbuild.2008.04.002.CrossRefGoogle Scholar
  35. Selgrade, M. K., Plopper, C. G., Gilmour, M. I., Conolly, R. B., & Foos, B. S. P. (2008). Assessing the health effects and risks associated with children’s inhalation exposures—Asthma and allergy. Journal of Toxicology and Environmental Health A, 71(3), 196–207.CrossRefGoogle Scholar
  36. Stryjakowska-Sekulska, M., Piotraszewska-Pajak, A., Szyszka, A., Nowicki, M., & Filipiak, M. (2007). Microbiological quality of indoor air in university rooms. Polish Journal of Environmental Studies, 16(4), 623–632. doi: 10.12980/APJTB.4.2014C807.Google Scholar
  37. U.S. EPA. (2002). Child-Specific Exposure Factors Handbook. EPA-600-P-00-002B. EPA, Environmental Protection Agency. doi:EPA/600/R-06/096F.Google Scholar
  38. U.S. EPA. (2004). Risk assessment: “Supplemental guidance for dermal risk assessment”, Part E of risk assessment guidance for Superfund, Human Health Evaluation Manual (Volume I), August 16, 2004.Google Scholar
  39. U.S. EPA. (2011). Exposure Factors Handbook: 2011 Edition. U.S. Environmental Protection Agency (Vol. EPA/600/R-). doi:EPA/600/R-090/052F.Google Scholar
  40. Walser, S. M., Gerstner, D. G., Brenner, B., Bünger, J., Eikmann, T., Janssen, B., et al. (2015). Evaluation of exposure–response relationships for health effects of microbial bioaerosols—A systematic review. International Journal of Hygiene and Environmental Health, 218(7), 577–589. doi: 10.1016/j.ijheh.2015.07.004.CrossRefGoogle Scholar
  41. Wichmann, J., Lind, T., Nilsson, M. A. M., & Bellander, T. (2010). PM2.5, soot and NO2 indoor-outdoor relationships at homes, pre-schools and schools in Stockholm, Sweden. Atmospheric Environment, 44(36), 4536–4544. doi: 10.1016/j.atmosenv.2010.08.023.CrossRefGoogle Scholar
  42. Yang, W., Sohn, J., Kim, J., Son, B., & Park, J. (2009). Indoor air quality investigation according to age of the school buildings in Korea. Journal of Environmental Management, 90(1), 348–354. doi: 10.1016/j.jenvman.2007.10.003.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Ewa Brągoszewska
    • 1
  • Anna Mainka
    • 1
    Email author
  • Jozef S. Pastuszka
    • 1
  1. 1.Department of Air ProtectionSilesian University of TechnologyGliwicePoland

Personalised recommendations