Aerobiologia

, Volume 31, Issue 4, pp 499–513 | Cite as

Is the recent decrease in airborne Ambrosia pollen in the Milan area due to the accidental introduction of the ragweed leaf beetle Ophraella communa?

  • M. Bonini
  • B. Šikoparija
  • M. Prentović
  • G. Cislaghi
  • P. Colombo
  • C. Testoni
  • L. Grewling
  • S. T. E. Lommen
  • H. Müller-Schärer
  • M. Smith
Original Paper

Abstract

This study aims to determine whether a significant decrease in airborne concentrations of Ambrosia pollen witnessed in the north-west of the Province of Milan in Northern Italy could be explained by environmental factors such as meteorology, or whether there is evidence to support the hypothesis that the decrease was related to the presence of large numbers of the oligophagous Ophraella communa leaf beetles that are used as a biological control agent against Ambrosia in other parts of the world. Airborne concentrations of Ambrosia, Cannabaceae and Urticaceae pollen data (2000–2013) were examined for trends over time and correlated with meteorological data. The amount of Ambrosia pollen recorded annually during the main flowering period of Ambrosia (August–September) was entered into linear regression models with meteorological data in order to determine whether the amount of airborne Ambrosia pollen recorded in 2013 was lower than would normally be expected based on the prevailing weather conditions. There were a number of significant correlations between concentrations of airborne Ambrosia, Cannabaceae and Urticaceae pollen, as well as between airborne pollen concentrations and daily and monthly meteorological data. The linear regression models greatly overestimated the amount of airborne Ambrosia pollen in 2013. The results of the regression analysis support the hypothesis that the observed decrease in airborne Ambrosia pollen may indeed be related to the presence of large numbers of O. communa in the Milan area, as the drastic decrease in airborne Ambrosia pollen in 2013 cannot be explained by meteorology alone.

Keywords

Aerobiology Ragweed Ophraella communa Biocontrol agent 

References

  1. Baskin, J. M., & Baskin, C. C. (1977). Dormancy and germination in seeds of common ragweed with reference to Beal´s buried seed experiment. American Journal of Botany, 64, 1174–1176.CrossRefGoogle Scholar
  2. Baskin, J. M., & Baskin, C. C. (1980). ecophysiology of secondary dormancy in seeds of Ambrosia artemisiifolia. Ecology, 3, 475–480.CrossRefGoogle Scholar
  3. Bickel, R. (2012). Multilevel analysis for applied research: It’s just regression! (Methodology in the social sciences). New York: Guilford Press.Google Scholar
  4. Bosio, G., Massobrio, V., Chersi, C., Scavarda, G., & Clark, S. (2014). Spread of the ragweed leaf beetle, Ophraella communa LeSage, 1986 (Coleoptera Chrysomelidae), in Piedmont Region (Northwestern Italy). Bollettino della Società Entomologica Italiana, 146(1), 17–30.Google Scholar
  5. Cockshull, K. E., & Kofranek, A. M. (1994). High night temperatures delay flowering, produce abnormal flowers and retard stem growth of cut-flower chrysanthemums. Scientia Horticulturae, 56, 217–234.CrossRefGoogle Scholar
  6. Comtois, P. (1998). Statistical analysis of aerobiological data. In Mandrioli, P., Comtois P. and V. Levizzani (eds.) Methods in aerobiology. Italy: Pitagora Editrice Bologna.Google Scholar
  7. Cox, C. S. & Wathes, C. M. (1995). Bioaerosols handbook. USA: Lewis Publishers.Google Scholar
  8. Dahl, Å., Galán, C., Hajkova, L., Pauling, A., Sikoparija, B., Smith, M., et al. (2013). The onset, course and intensity of the pollen season. In M. Sofiev & K.-C. Bergmann (Eds.), Allergenic Pollen (pp. 29–70). Netherlands: Springer.CrossRefGoogle Scholar
  9. Dahl, A., Strandhede, S.-O., & Wihl, J.-A. (1999). Ragweed—An allergy risk in Sweden? Aerobiologia, 15(4), 293–297.CrossRefGoogle Scholar
  10. Essl, F., Dullinger, S., & Kleinbauer, I. (2009). Changes in the spatio-temporal patterns and habitat preferences of Ambrosia artemisiifolia during its invasion of Austria. Preslia, 81(2), 119–133.Google Scholar
  11. Fumanal, B., Chauvel, B., & Bretagnolle, F. (2007). Estimation of pollen and seed production of common ragweed in France. Annals of Agricultural and Environmental Medicine, 14, 233–236.Google Scholar
  12. Futuyma, D. J., Keese, M. C., & Scheffer, S. J. (1993). Genetic constraints and the phylogeny of insect-plant associations: responses of Ophraella communa (Coleoptera: Chrysomelidae) to host plants of its congeners. Evolution, 47(3), 888–905.CrossRefGoogle Scholar
  13. Futuyma, D. J., & MCCafferty, S. S. (1990). Phylogeny and the evolution of host plant associations in the leaf beetle genus Ophraella (Coleoptera, Chrysomelidae). Evolution, 44, 1885–1913.CrossRefGoogle Scholar
  14. Gerber, E., Schaffner, U., Gassmann, A., Hinz, H. L., Seier, M., & Müller-Schärer, H. (2011). Prospects for biological control of Ambrosia artemisiifolia in Europe: Learning from the past. Weed Research, 51(6), 559–573.CrossRefGoogle Scholar
  15. Guo, J.-Y., Zhou, Z.-S., Zheng, X.-W., Chen, H.-S., Wan, F.-H., & Luo, Y.-H. (2011). Control efficiency of leaf beetle, Ophraella communa, on the invasive common ragweed, Ambrosia artemisiifolia, at different growing stages. Biocontrol Science and Technology, 21(9), 1049–1063.CrossRefGoogle Scholar
  16. Hirst, J. M. (1952). An automatic volumetric spore trap. The Annals of Applied Biology, 39(2), 257–265.CrossRefGoogle Scholar
  17. Meng, L., & Li, B. (2005). Advances on biology and host specificity of the newly introduced beetle, Ophraella communa Lesage (Coleoptera: Chrysomelidae), attacking Ambrosia artemisiifolia (Compositae) in continent of China. Chinese Journal of Biological Control, 21(2), 65–69.Google Scholar
  18. Müller-Schärer, H., Lommen, S. T. E., Rossinelli, M., Bonini, M., Boriani, M., Bosio, G., et al. (2014). Ophraella communa, the ragweed leaf beetle, has successfully landed in Europe: Fortunate coincidence or threat? Weed Research, 54(2), 109–119.CrossRefGoogle Scholar
  19. Ordinanza_Del_Presidente_Della_Regione_Lombardia (1999). O.P.G.R. 29 marzo 1999—n. 25522. Ordinanza contingibile e urgente ai sensi dell’art. 32 della legge 23 dicembre 1978, n.833. Disposizioni contro la diffusione della pianta Ambrosia nella Regione Lombardia al fine di prevenire la patologia allergica ad essa correlata: Bolletino Ufficiale della Regione Lombardia. Serie Ordinaria N.15, 12 aprile 1999.Google Scholar
  20. Pallant, J. (2001). SPSS survival manual. Maidenhead: Open University Press.Google Scholar
  21. Palmer, W. A., & Goeden, R. D. (1991). The host range of Ophraella communa Lesage (Coleoptera: Chrysomelidae). Coleopterists Bulletin, 45, 115–120.Google Scholar
  22. Pickett, S. T., & Baskin, J. M. (1973). The role of temperature and light in the germination behaviour of Ambrosia artemisiifolia. Torrey Botanical Society, 100, 165–170.CrossRefGoogle Scholar
  23. Prentović, M., Radišić, P., Smith, M., & Šikoparija, B. (2014). Predicting walnut (Juglans spp.) crop yield using meteorological and airborne pollen data. Annals of Applied Biology In press.Google Scholar
  24. Regione_Lombardia (2013). Prevenzione delle allergopatie da ambrosia in Lombardia.Google Scholar
  25. Rogers, C., Wayne, P. M., Macklin, E. A., Muilenberg, M. L., Wagner, C. J., Epstein, P. R., et al. (2006). Interaction of the onset of spring and elevated atmospheric CO2 on ragweed (Ambrosia artemisiifolia L.) pollen production. Environmental Health Perspectives, 114(6), 865–869.CrossRefGoogle Scholar
  26. Skjøth, C. A., Smith, M., Sikoparija, B., Stach, A., Myszkowska, D., Kasprzyk, I., et al. (2010). A method for producing airborne pollen source inventories: An example of Ambrosia (ragweed) on the Pannonian Plain. Agricultural and Forest Meteorology, 150, 1203–1210.CrossRefGoogle Scholar
  27. Smith, M., Cecchi, L., Skjoth, C. A., Karrer, G., & Sikoparija, B. (2013). Common ragweed: A threat to environmental health in Europe. Environment International, 61, 115–126.CrossRefGoogle Scholar
  28. Stach, A., Smith, M., Prieto Baena, J. C., & Emberlin, J. (2008). Long-term and short-term forecast models for Poaceae (grass) pollen in Poznań, Poland, constructed using regression analysis. Environmental and Experimental Botany, 62, 323–332.CrossRefGoogle Scholar
  29. Sterling, M., Rogers, C., & Levetin, E. (1999). An evaluation of two methods for microscopic analysis of airborne fungal spore concentrations from the Burkard spore trap. Aerobiologia, 15, 9–18.CrossRefGoogle Scholar
  30. Takizawa, H. A., Saito, A., Sato, K., Hirano, Y., & Ohno, M. (1999). Invading insect, Ophraella communa LeSage, 1986. Range expansion and life history in Kanto District, Japan. Gekkanlushi, 338, 26–31.Google Scholar
  31. Tanaka, K., & Yamanaka, T. (2009). Factors affecting flight activity of Ophraella communa (Coleoptera: Chrysomelidae), an exotic insect in Japan. Environmental Entomology, 38(1), 235–241.CrossRefGoogle Scholar
  32. Teshler, M. P., Ditommaso, A., Gagnon, J. A., & Watson, A. K. (2002). Ambrosia artemisiifolia L., common ragweed (Asteraceae). In J. T. Huber (Ed.) Biological control programmes in Canada New York (pp. 290–294), USA CABI Publishing.Google Scholar
  33. Wan, F.-H., Guo, J.-Y. & Zhang, F. (2009). Research on biological invasions in China. Beijing: Science press.Google Scholar
  34. Willemsen, R. W. (1975). Effect of stratification temperature and germination temperature on germination and induction of secondary dormancy in common ragweed seeds. American Journal of Botany, 62, 1–5.CrossRefGoogle Scholar
  35. Yamamura, K., Moriya, S., Tanaka, K., & Shimizu, T. (2007). Estimation of the potential speed of range expansion of an introduced species: characteristics and applicability of the gamma model. Population Ecology, 49(1), 51–62.CrossRefGoogle Scholar
  36. Zhou, Z.-S., Chen, H.-S., Zheng, X.-W., Guo, J.-Y., Guo, W., Li, M., et al. (2014). Control of the invasive weed Ambrosia artemisiifolia with Ophraella communa and Epiblema strenuana. Biocontrol Science and Technology, 24(8), 950–964.CrossRefGoogle Scholar
  37. Zhou, Z.-S., Guo, J.-Y., Chen, H.-S., & Wan, F.-H. (2010a). Effect of humidity on the development and fecundity of Ophraella communa (Coleoptera: Chrysomelidae). BioControl, 55(2), 313–319.CrossRefGoogle Scholar
  38. Zhou, Z.-S., Guo, J.-Y., Chen, H.-S., & Wan, F.-H. (2010b). Effects of temperature on survival, development, longevity, and fecundity of Ophraella communa (Coleoptera: Chrysomelidae), a potential biological control agent against Ambrosia artemisiifolia (Asterales: Asteraceae). Environmental Entomology, 39(3), 1021–1027.CrossRefGoogle Scholar
  39. Zhou, Z.-S., Guo, J.-Y., Zheng, X.-W., Luo, M., Chen, H.-S., & Wan, F.-H. (2011). Reevaluation of biosecurity of Ophraella communa against sunflower (Helianthus annuus). Biocontrol Science and Technology, 21(10), 1147–1160.CrossRefGoogle Scholar
  40. Zhu, D. H., Zhu, J., Peng, Z. P., & Wan, F. H. (2012). Effects of photoperiod and temperature on reproductive diapause in Ophraella communa (Coleoptera: Chrysomelidae), a potential biocontrol agent against Ambrosia artemisiifolia. Insect Science, 19(3), 286–294.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • M. Bonini
    • 1
  • B. Šikoparija
    • 2
  • M. Prentović
    • 2
    • 5
  • G. Cislaghi
    • 1
  • P. Colombo
    • 1
  • C. Testoni
    • 1
  • L. Grewling
    • 3
  • S. T. E. Lommen
    • 4
  • H. Müller-Schärer
    • 4
  • M. Smith
    • 3
  1. 1.Department of Medical Prevention, Public HealthLocal Health Authority of Milan 1Parabiago (Mi)Italy
  2. 2.Laboratory for Palynology, Department of Biology and Ecology, Faculty of SciencesUniversity of Novi SadNovi SadSerbia
  3. 3.Laboratory of Aeropalynology, Faculty of BiologyAdam Mickiewicz UniversityPoznańPoland
  4. 4.Department BiologyUniversity of FribourgFribourgSwitzerland
  5. 5.Department of Oto-Rhino-Laryngology, Research Group Aerobiology and Pollen informationMedical University of ViennaViennaAustria

Personalised recommendations