Aerobiologia

, Volume 31, Issue 4, pp 445–455 | Cite as

Use of an atmospheric simulation chamber for bioaerosol investigation: a feasibility study

  • P. Brotto
  • B. Repetto
  • P. Formenti
  • E. Pangui
  • A. Livet
  • N. Bousserrhine
  • I. Martini
  • O. Varnier
  • J. F. Doussin
  • P. Prati
Original Paper

Abstract

Environmental simulation chambers (atmospheric/smog chambers) are small- to large-scale facilities (with volumes ranging between a few to several hundred cubic meters), where atmospheric conditions can be monitored in real time under control to reproduce realistic environments and to study interactions among their constituents. Up to now, they have been used mainly to study chemical and photochemical processes that occur in the atmosphere, such as ozone formation and cloud chemistry, but the high versatility of these facilities allows for a wider application covering all fields of atmospheric aerosol science. The biological component of atmospheric aerosol (bioaerosol) is a relevant subject of scientific investigation requiring expertise in both atmospheric science and biology. It raises a strong interest in the scientific community due to its link with human health and the relevant role that biological particles are supposed to play in ice nuclei formation and cloud condensation. Nevertheless, the mechanisms of interaction between bioaerosols and other aerosols, the behavior of airborne microorganisms in different atmospheric conditions and the impact of bioaerosols on radiation and clouds are still poorly known and require deeper investigation. In this work, we present the results of a feasibility study of the use of an atmospheric chamber facility to study bioaerosols under differing atmospheric conditions. Here, we present the experimental setup and the protocol to inject, analyze and extract Bacillus subtilis strain in the Experimental Multiphasic Atmospheric Simulation Chamber, and we investigate the sensitivity of this tool to possible changes in bacteria viability by varying the atmospheric conditions.

Keywords

Atmospheric aerosol Atmospheric simulation chambers B. subtilis Bioaerosol PBAP 

Notes

Acknowledgments

The experiments at CESAM were performed under the TransNational Access program, co-funded by the Eurochamp2 project (Contract n. E2-2013-05-07-0091). Dr. Emanuele Bruschi and Euroclone Spa are acknowledged for providing consumable materials. We thank Dr. Jennifer McDermott for the language revision.

References

  1. Amato, P., Parazols, M., Sancelme, M., Laj, P., Mailhot, G., & Delort, A. (2007). Microorganisms isolated from the water phase of tropospheric clouds at the Puy de Dome: major groups and growth abilities at low temperatures. FEMS Microbiology Ecology, 59(2), 242–254.CrossRefGoogle Scholar
  2. Ariya, P. A., Sun, J., Eltouny, N. A., Hudson, E. D., Hayes, C. T., & Kos, G. (2009). Physical and chemical characterization of bioaerosols—implications for nucleation processes. International Reviews in Physical Chemistry, 28, 1–32.CrossRefGoogle Scholar
  3. Bauer, H., Giebl, H., Hitzenberger, R., Kasper-Giebl, A., Reischl, G., Zibuschka, F., & Puxbaum, H. (2003). Airborne bacteria as cloud condensation nuclei. Journal Geophysical Research, 108, 4658. doi: 10.1029/2003JD003545.CrossRefGoogle Scholar
  4. Becker, K. H. (2006). Overview on the development of chambers for the study of atmospheric chemical processes. In I. Barnes & K. J. Rudzinski (Eds.), Nato science series: IV: Earth and environmental science (pp. 1–26). Amsterdam: Springer.Google Scholar
  5. Blunden, J., & Arndt, D. S. (2014). State of the climate in 2013. Bulletin of the American Meteorological Society, 95(7), S1–S257.CrossRefGoogle Scholar
  6. Bowers, R. M., McLetchie, S., Knight, R., & Fierer, N. (2010). Spatial variability in airborne bacterial communities across land-use types and their relationship to the bacterial communities of potential source environments. ISME Journal, 5, 1–12.Google Scholar
  7. Brodie, E. L., DeSantis, T. Z., Parker, J. P. M., Zubietta, I. X., Piceno, Y. M., & Andersen, G. L. (2007). Urban aerosols harbor diverse and dynamic bacterial populations. Proceedings of National Academy of Sciences (PNAS), 104, 299–304.CrossRefGoogle Scholar
  8. Bundke, U., Reimann, B., Nillius, B., Jaenicke, R., & Bingemer, H. (2010). Development of a bioaerosol single particle detector (BIO IN) for the fast ice nucleus chamber FINCH. Atmospheric Measurement Techniques, 3, 263–271.CrossRefGoogle Scholar
  9. Burrows, S. M., Elbert, W., Lawrence, M. G., & Poschl, U. (2009). Bacteria in the global atmosphere–Part 1: Review and synthesis of literature data for different ecosystems. Atmospheric Chemistry and Physics, 9, 9263–9280.CrossRefGoogle Scholar
  10. IPCC Intergovernmental Panel on Climate Change (2013) Climate Change 2014. Working Group III—Mitigation of Climate Change. Chapter 5 Drivers, Trends and Mitigation.Google Scholar
  11. Chou, C. (2011) Investigation of ice nucleation properties onto soot, bioaerosol and mineral dust during different measurement campaigns, Diss. ETH No. 19520.Google Scholar
  12. Coyne, F. P. (1933). The effect of carbon dioxide on bacterial growth. Proceedings of the Royal Society of London, Series B: Biological sciences, 113, 196–217.CrossRefGoogle Scholar
  13. Crump, J. G., & Seinfeld, J. H. (1981). Turbulent deposition and gravitational sedimentation of an aerosol in a vessel of arbitrary shape. Journal of Aerosol Science, 12, 405.CrossRefGoogle Scholar
  14. Deguillaume, L., Leriche, M., Amato, P., Ariya, P. A., Delort, A. M., Poschl, U., et al. (2008). Microbiology and atmospheric processes: chemical interactions of primary biological aerosols. Biogeosciences, 5, 1073–1084.CrossRefGoogle Scholar
  15. Després, V. R., Huffman, A. J., Burrows, S. M., Hoose, C., Safatov, A. S., Buryak, G., et al. (2012). Primary biological aerosol particles in the atmosphere: A review. Tellus B,. doi: 10.3402/tellusb.v64i0.15598.Google Scholar
  16. Di Biagio, C., Formenti, P., Styler, S. A., Pangui, E., & Doussin, J.-F. (2014). Laboratory chamber measurements of the longwave extinction spectra and complex refractive indices of African and Asian mineral dusts. Geophysical Reseach Letters,. doi: 10.1002/2014GL060213.Google Scholar
  17. EMEP/EEA air pollutant emission inventory guidebook 2013—EEA Technical report No 12/2013—ISSN 1725-2237 http://www.eea.europa.eu/publications/emep-eea-guidebook-2013.
  18. Fahlgren, C., Bratbak, G., Sandaa, R.-A., Thyrhaug, R., & Zweifel, U. L. (2010). Diversity of airborne bacteria in samples collected using different devices for aerosol collection. Aerobiologia, 27, 107–120.CrossRefGoogle Scholar
  19. Gandolfi, I., Bertolini, V., Ambrosini, R., Bestetti, G., & Franzetti, A. (2013). Unravelling the bacterial diversity in the atmosphere. Applied Microbiology and Biotechnology,. doi: 10.1007/s00253-013-4901-2.Google Scholar
  20. Georgakopoulos, D. G., Després, V., Fröhlich-Nowoisky, J., Psenner, R., Ariya, P. A., Pòsfai, M., et al. (2009). Microbiology and atmospheric processes: Biological, physical and chemical characterization of aerosol particles. Biogeosciences, 6, 721–737.CrossRefGoogle Scholar
  21. Griffiths, W. D., Stewart, I. W., Clark, J. M., & Holwill, I. L. (2001). Procedures for the characterisation of bioaerosol particles. Part II: Effects of environment on culturability. Aerobiologia, 17, 109–119.CrossRefGoogle Scholar
  22. Ho, J., Spence, M., & Ogston, J. (2001). Characterizing biological aerosol in a chamber: An approach to estimation of viable organisms in a single biological particle. Aerobiologia, 17, 301–312.CrossRefGoogle Scholar
  23. Hoose, C., Kristj´ansson, J., & Burrows, S. (2010). How important is biological ice nucleation in clouds on a global scale? Environmental Research Letters, 5(024), 009.Google Scholar
  24. Jones, A. M., & Harrison, R. M. (2004). The effect of meteorological factors on atmospheric bioaerosols concentrations—A review. Science of Total Environment, 326, 151–180.CrossRefGoogle Scholar
  25. Kellogg, C. A., & Griffin, D. W. (2006). Aerobiology and the global transport of desert dust. Trends in Ecology & Evolution, 21(11), 638–644.CrossRefGoogle Scholar
  26. Lee, S. H., Lee, H. J., Kim, S. J., Lee, H. M., Kang, H., & Kim, Y. P. (2010). Identification of airborne bacterial and fungal community structures in an urban area by T-RFLP analysis and quantitative real-time PCR. Science of Total Environment, 408(6), 1349–1357.CrossRefGoogle Scholar
  27. Levin, M. A., Shahamat, M., Shahamat, Y., Stelma, G., & Colwell, R. R. (1997). Design, construction, and evaluation of a chamber for aerobiology. Aerobiologia, 13, 1–6.CrossRefGoogle Scholar
  28. Li, C. S., & Lin, Y. C. (1999). Sampling performance of impactors for bacterial bioaerosols. Aerosol Science and Technology, 30, 280–287.CrossRefGoogle Scholar
  29. Ligthart, B. (1997). The ecology of bacteria in alfresco atmosphere. FEMS Microbiology Ecology, 23, 263–274.CrossRefGoogle Scholar
  30. Ligthart, B. (2000). Mini-review of the concentration variations found in the alfresco atmospheric bacterial populations. Aerobiologia, 16, 7–16.CrossRefGoogle Scholar
  31. Maki, T., Kakikawa, M., Kobayashi, F., Yamada, M., Matsuki, A., Hasegawa, H., & Iwasaka, Y. (2013). Assessment of composition and origin of airborne bacteria in the free troposphere over Japan. Atmospheric Environment, 74, 73–82.CrossRefGoogle Scholar
  32. Mancinelli, R. L. (1996). The nature of nitrogen: An overview. Life support & biosphere science: International Journal of Earth Space, 3, 17–24.Google Scholar
  33. May, K. R. (1945). The cascade impactor: An instrument for sampling coarse aerosols. Journal of Scientific Instruments, 22, 187. doi: 10.1088/0950-7671/22/10/303.CrossRefGoogle Scholar
  34. McMurray, P. H., & Rader, J. (1985). Aerosol wall losses in electrically charged chambers. Aerosol Science and Technology, 4(3), 249–268.CrossRefGoogle Scholar
  35. Möhler, O., Georgakopoulos, D. G., Morris, C. E., Benz, S., Ebert, V., Hunsmann, S., et al. (2008). Heterogeneous ice nucleation activity of bacteria: New laboratory experiments at simulated cloud conditions. Biogeosciences, 5, 1425–1435.CrossRefGoogle Scholar
  36. Morris, C. E., Sands, D. C., Bardin, M., Jaenicke, R., Vogel, B., Leyronas, C., et al. (2011). Microbiology and atmospheric processes: Research challenges concerning the impact of airborne micro-organisms on the atmosphere and climate. Biogeosciences, 8, 17–25.CrossRefGoogle Scholar
  37. Pasteur, L. (1890). Mémoire sur les corpsuscules organisés qui existent dans l’atmosphère. Annales de Chimie et de Physique, 3, 5–110.Google Scholar
  38. Reponen, T., Willeke, K., Grinshpun, S., & Nevalainen, A. (1995). Biological particle sampling. In C. S. Cox & C. M. Wathes (Eds.), Bioaerosol handbook (pp. 751–778). Boca Raton, FL: CRC-Press.Google Scholar
  39. Ribeiro, H., Duque, L., Sousa, R., & Abreu, I. (2013). Ozone effects on soluble protein content of Acer negundo, Quercus robur and Platanus spp Pollen. Aerobiologia, 29(3), 443–447.CrossRefGoogle Scholar
  40. Sousa, R., Duque, L., Duarte, A. J., Gomes, C. R., Ribeiro, H., Cruz, A., et al. (2012). In vitro exposure of Acer negundo pollen to atmospheric levels of SO2 and NO2: Effects on allergenicity and germination. Environmental Science and Technology, 46(4), 2406–2412.CrossRefGoogle Scholar
  41. Tang, J. W. (2009). The effect of environmental parameters on the survival of airborne infectious agents. Journal of Royal Society (Interface), 6, S737–S746.CrossRefGoogle Scholar
  42. Urbano, R., Palenik, B., Gaston, C. J., & Prather, K. A. (2011). Detection and phylogenetic analysis of coastal bioaerosols using culture dependent and independent techniques. Biogeosciences, 8, 301–309.CrossRefGoogle Scholar
  43. US EPA (1997)—United States Environmental Protection AgencyMicrobial AssessmentsAttachment IFinal Risk Assessment of Bacillus subtilis http://www.epa.gov/biotech_rule/pubs/fra/fra009.htm. Accessed 20 Oct 2014.
  44. Wang, J., Doussin, J. F., Perrier, S., Perraudin, E., Katrib, Y., Pangui, E., & Picquet-Varrault, B. (2011). Design of a new multi-phase experimental simulation chamber for atmospheric photosmog, aerosol and cloud chemistry research. Atmospheric Measurement Techniques, 4, 2465–2494.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • P. Brotto
    • 1
  • B. Repetto
    • 2
  • P. Formenti
    • 3
  • E. Pangui
    • 3
  • A. Livet
    • 4
  • N. Bousserrhine
    • 4
  • I. Martini
    • 2
  • O. Varnier
    • 2
  • J. F. Doussin
    • 3
  • P. Prati
    • 1
  1. 1.Department of Physics (DIFI) and National Institute of Nuclear Physics (INFN)University of GenoaGenoaItaly
  2. 2.Department of Surgery and Diagnostics Integrated Sciences (DISC), Institute of MicrobiologyUniversity of GenoaGenoaItaly
  3. 3.LISA, UMR CNRS 7583, Institut Pierre-Simon LaplaceUniversité Paris Est Créteil et Université Paris DiderotCréteilFrance
  4. 4.Institut d’écologie et des sciences de l’environnement de Paris (IEES Paris), département SoléO (Sol et Eaux) équipe DIIMUniversité Paris-EstCréteilFrance

Personalised recommendations