Skip to main content

Advertisement

Log in

Relationship between flowering phenology, pollen production and atmospheric pollen concentration of Plantago lanceolata (L.)

  • OriginalPaper
  • Published:
Aerobiologia Aims and scope Submit manuscript

Abstract

The present study sampled pollen grains in the atmosphere using a Burkard® 7-day-recording trap and periodically checked the flowering phases of Plantago lanceolata L. in the locality of León (NW of Spain) from late March to early August during 2007 and 2008. The results showed that the phenological phases considered for P. lanceolata coincided in most sampling points. The differences between them depended mainly on the characteristics of the land on which the plants developed and water availability. In addition, the differences between the start and duration of the different phenological phases over the 2 years were mainly due to climatic variations each year. Plantago pollen concentration in the atmosphere and phenological data were related during these 2 years of study. The differences in Plantago pollen production per anther were determined by environmental conditions such as humidity. Another important factor was human action.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aguilera, F., & Ruíz-Valenzuela, L. (2009). Study of the floral phenology of Olea europea L., in Jaén province (SE Spain) and its relation with pollen emission. Aerobiologia, 25(4), 217–225.

    Article  Google Scholar 

  • Alcázar, P., Stach, A., Nowak, M., & Galán, C. (2009). Comparison of airborne herb pollen types in Córdoba (Southwestern Spain) and Poznan (Western Poland). Aerobiologia, 25, 55–63.

    Article  Google Scholar 

  • Alexander, M. P. (1969). Differential staining of aborted and non aborted pollen. Stain Technology, 44(3), 117–122.

    CAS  Google Scholar 

  • Andres, M. V., Rodríguez, J., & Duran, J. M. (1999). Viabilidad del polen de albaricoquero (Prunus americana L.). Investigación agraria. Producción y protección vegetales, 14(1–2), 25–32.

    Google Scholar 

  • Barbieri, R., Rotarelli, L., Salis, A., & Zinoni, F. (1989). Guida alle rilevazioni agrofenologiche ed alla compilazione delle schede di relevamento per le colture erbacee el arboree. Bologna: ERSA.

    Google Scholar 

  • Bassett, I. J., & Crompton, C. W. (1968). Pollen morphology and chromosome numbers of the family Plantaginaceae in North America. Canadian Journal of Botany, 46, 349.

    Article  Google Scholar 

  • Calabozo, B., Barber, D., & Polo, F. (2002). Reactividad cruzada entre los pólenes de Plantago lanceolata y Olea europaea. Alergologia e Inmunologia Clinica, 18(3), 125–126.

  • Calabozo, B., Díaz-Perales, A., Salcedo, G., Barber, D., & Polo, F. (2003). Cloning and expression of biologically active Plantago lanceolata pollen allergen Pla l 1 in the yeast Pichia pastoris. Biochemical Journal, 372, 889–896.

    Article  CAS  Google Scholar 

  • Cenci, C. A., & Ceschia, M. (2000). Forecasting of the flowering time for wild species observed at Guidonia, central Italy. International Journal of Biometeorology, 44, 88–96.

    Article  CAS  Google Scholar 

  • Chen, I. C., Hill, J. K., Ohlemüller, R., Roy, D. B., & Thomas, C. D. (2011). Rapid range shifts of species associated with high levels of climate warming. Nature, 333, 1024–1026.

    CAS  Google Scholar 

  • Dąbrowska, A., & Kaszewsk, B. M. (2012). The relationship between flowering phenology and pollen season of Alnus Miller. Acta Agrobotánica, 65(2), 57–66.

    Article  Google Scholar 

  • D’Amato, G., & Lobefalo, G. (1989). Allergenic pollens in the southern Mediterranean area. Journal of Allergy and Clinical Immunology, 83, 116–122.

    Article  Google Scholar 

  • D’Amato, G., Spieksma, F. T. M., & Bonini, S. (1991). Allergenic pollen and pollinosis in Europe. Oxford: Blackwell Scientific Publications.

    Google Scholar 

  • Darrow, K., & Bowers, D. (1997). Phenological and population variation in iridoid glycosides of Plantago lanceolata (Plantaginaceae). Biochemical Systematics and Ecology, 25(1), 1–11.

    Article  CAS  Google Scholar 

  • Delph, L. F., Johannson, M. H., & Stephenson, A. G. (1997). How environmental factors affect pollen performance: ecological and evolutionary perspectives. Ecology, 78, 1632–1639.

    Article  Google Scholar 

  • Dittmar, C., & Elling, W. (2006). Phenological phases of common beech (Fagus Sylvatica L.) and their dependence on region and altitude in Southern Germany. European Journal of Forest Research, 125, 181–188.

    Article  Google Scholar 

  • Estrella, N., Menzel, A., Krämer, U., & Behrendt, H. (2006). Integration of flowering dates in phenology and pollen counts in aerobiology: analysis of their spatial and temporal coherence in Germany (1992–1999). International Journal of Biometeorology, 51, 49–59.

    Article  Google Scholar 

  • Faegri, K., & Van Der Pijl, L. (1979). The principles of pollination ecology. Oxford: Pergamon Press.

    Google Scholar 

  • Fitter, A. H., & Fitter, R. S. R. (2002). Rapid change in flowering time in British plants. Science, 296, 1689–1691.

    Article  CAS  Google Scholar 

  • Fornaciari, M., Galán, C., Mediavilla, A., Domínguez, E., & Romano, B. (2000). Aeropalynological and phenological study in two different Mediterranean olive areas: Córdoba (Spain) and Perugia (Italy). Plant Biosystems, 134(2), 199–204.

    Article  Google Scholar 

  • Galán Soldevilla, C., Cariñanos González, C., Alcázar Teno, P., & Domínguez Vilches, E. (2007). Spanish aerobiology network: Management and quality manual. Spain: University of Córdoba.

    Google Scholar 

  • García-González, M. E. (1998). Efectos de las repoblaciones con pinos en la climax de la Querceta ilicis Mediterránea leonesa. Diputación provincial de León: León.

    Google Scholar 

  • García-González, J. J., Vega-Chicote, J. M., Rico, P., Moscoso del Prado, J. M., Carmona, M. J., Miranda, A., et al. (1998). Prevalence of atopy in students from Málaga, Spain. Annals of Allergy, Asthma & Immunology, 180, 237–244.

    Article  Google Scholar 

  • García-Mozo, H., Galán, C., & Vázquez, L. (2006). The reliability of geostatistic interpolation in olive field floral phenology. Aerobiologia, 22, 97–108.

    Google Scholar 

  • García-Mozo, H., Mestre, A., & Galán, C. (2010). Phenological trends in southern areas: A response to climate change. Agricultural and Forest Metodology, 150, 575–590.

  • González-Parrado, Z., Fernández-González, D., Camazón, B., Valencia-Barrera, R. M., Vega-Maray, A. M., Asturias, J. A., et al. (2014a). Molecular aerobiology: Plantago allergen Pla l 1 in the atmosphere. Annals of Agricultural and Environmental Medicine: AAEM, 21(2), 282–289.

    Article  Google Scholar 

  • González-Parrado, Z., Valencia-Barrera, R. M., Vega-Maray, A. M., Fuertes-Rodríguez, C. R., & Fernández-González, D. (2014b). The weak effects of climatic change on Plantago pollen concentration: 17 years of monitoring in Northwestern Spain. International Journal of Biometeorology, 58(7), 1641–1650.

    Article  Google Scholar 

  • Guardia, R., & Belmonte, J. (2004). Phenology and pollen production of Parietaria judaica L. in Catalonia (NE Spain). Grana, 43, 57–64.

    Article  Google Scholar 

  • Gutiérrez Bustillo, M., Cervigón, P., & Pertiñez, C. (2002). Aerobiología en Madrid. Estación de Ciudad Universitaria (2000–2001). REA, 7, 225–230.

    Google Scholar 

  • Huertas, A. J., Mozota, J. M., & García-Cervantes, A. M. (2003). Relación entre la sensibilización a pólenes de palmera, Salsola y Plantago. Alergologia e Inmunologia Clinica, 18(3), 122.

  • Hyde, H. A., & Williams, D. A. (1945). Studies in atmospheric pollen. III. Pollen production and pollen incidence in ribwort pollen (P. lanceolata). New Phytologist, 45, 271–277.

    Article  Google Scholar 

  • Issarakraisilia, M., & Considine, J. A. (1994). Effects of temperature on pollen viability in Mango cv. ‘Kensington’. Annals of Botany, 73, 231–240.

    Article  Google Scholar 

  • Jato, V., Méndez, J., Rodríguez-Rajo, F. J., & Seijo, C. (2002). The relationship between the flowering phenophase and airborne pollen of Betula in Galicia (N.W. Spain). Aerobiologia, 18, 55–64.

    Article  Google Scholar 

  • Kang, S., Running, S. W., Lim, J. H., Zhao, M., Park, C. H.-R., & Loehman, R. (2003). A regional phenology model for detecting onset of greenness in temperate mixed forest, Korea: an application of MODIS leaf area index. Remote Sensing of Environment, 86, 232–242.

    Article  Google Scholar 

  • Käpyla, M. (1991). Testing the age and viability of airborne pollen. Grana, 29, 430–433.

    Article  Google Scholar 

  • Khanduri, V. P., & Sharma, C. M. (2002). Pollen production, microsporangium dehiscence and pollen flow in Himalayan cedar (Cedrus deodara Roxb. ex D. Don). Annals of Botany, 89, 587–593.

    Article  CAS  Google Scholar 

  • Khatun, S., & Flowers, T. J. (1995). The estimation of pollen viability in rice. Journal of Experimental Botany, 46, 151–154.

    Article  CAS  Google Scholar 

  • Koti, S., Reddy, R., Reddy, V. R., Kakani, V. G., & Zhao, D. (2005). Interactive effects of carbon dioxide, temperature and ultraviolet-B radiation on soybean (Glycine max L.) flower and pollen morphology, pollen production, germination and tube lengths. Journal of Experimental Botany, 56(412), 725–736.

    Article  CAS  Google Scholar 

  • Krilis, S., Baldo, B. A., & Basten, A. (1985). Detailed analysis of allergen specific IgE responses in 341 allergic patients. Associations between allergens and between allergen groups and clinical diagnoses. Australian and New Zealand Journal of Medicine, 15, 421–426.

    Article  CAS  Google Scholar 

  • Lacey, E. P., & Herr, D. (2005). Phenotypic plasticity, parental effects, and parental care in plants? I. An examination of spike reflectance in Plantago lanceolata (Plantaginaceae). American Journal of Botany, 92(6), 920–930.

    Article  Google Scholar 

  • Latorre, M. J., & Bianchi, M. M. (1998). Relationship between flowering development of Ulmus pumila and Fraxinus excelsior and their airborne pollen. Grana, 37, 233–238.

    Article  Google Scholar 

  • Lau, T. C., Lu, X., Koide, R. T., & Stephenson, A. G. (1995). Effects of soil fertility and mycorrhizal infection on pollen grain size of Cucurbita pepo (Cucurbitaceae). Plant, Cell and Environment, 18, 169–177.

    Article  Google Scholar 

  • León-Ruiz, E., Alcázar, P., Domínguez-Vilches, E., & Galán, C. (2011). Study of Poaceae phenology in a Mediterranean climate. Which species contribute most to airborne pollen counts? Aerobiologia, 27, 37–50.

    Article  Google Scholar 

  • Mahmoud, A. A., Bacha, A. M. A., & Farahat, A. (1998). Pollen viability, germination and rates of pollen tube growth in some pomegranate cultivars (Punica granatum L.). Journal of King Saud University Agricultural Sciences 10(1), 73–81.

    Google Scholar 

  • Menzel, A. (2000). Trends in phonological phases in Europe between 1951 and 1996. International Journal of Biometeorology, 44, 76–81.

    Article  CAS  Google Scholar 

  • Murat Asma, B. (2008). Determination of pollen viability germination ratios and morphology of eight apricot genotypes. African Journal of Biotechnology, 7(23), 4269–4273.

    Google Scholar 

  • Newham, R. M., Fountain, D. W., Cornford, C. C., & Forde, M. B. (1995). A national survey of airborne pollen and grass flowering in New Zeland, with implications for respiratory disorder. Aerobiologia, 11, 239–252.

    Article  Google Scholar 

  • Norton, J. D. (1966). Testing of plum pollen viability with tetrazolium salts. Proceedings of the American Society for Horticultural Science, 89, 132–134.

    Google Scholar 

  • Orlandi, F., Ruga, L., Bonofiglio, T., Romano, B., & Fornaciari, M. (2014). Fifteen-year Phenological plant species and meteorological trends in central Italy. International Journal of Biometeorology, 58, 661–667.

    Article  CAS  Google Scholar 

  • Orlandi, F., Ruga, L., Romano, B., & Fornaciari, M. (2005). An integrated use of aerobiological and phenological data to analyse flowering in olive groves. Grana, 44, 51–56.

    Article  Google Scholar 

  • Osborne, C. P., Chuine, I., Viner, D., & Woodward, F. I. (2000). Olive phenology as a sensitive indicator of future climatic warming in the Mediterranean. Plant, Cell and Environment, 23, 701–710.

    Article  Google Scholar 

  • Oteros, J., García-Mozo, H., Vázquez, L., Mestre, A., Domínguez-Vilches, E., & Galán, C. (2013). Modelling olive phenological response to weather and topography. Agriculture, Ecosystems & Environment, 179, 62–66.

    Article  Google Scholar 

  • Parfitt, D. E., & Ganeshan, S. (1989). Comparison of procedures for estimating viability of Prunus pollen. HortScience, 24, 354–356.

    Google Scholar 

  • Peñuelas, J., Rutishouser, T., & Filella, I. (2009). Phenology feedbacks on climate change. Science, 324, 887–888.

    Article  Google Scholar 

  • Prieto Baena, J. C., Hidalgo, P. J., Galán, C., & Domínguez, E. (2003). Pollen production in the Poaceae family. Grana, 42, 153–160.

    Article  Google Scholar 

  • Primack, R. C. (1978). Evolutionary aspects of wind pollination in the genus Plantago (Plantaginaceae). New Phytologist, 81, 449–458.

    Article  Google Scholar 

  • Puppi Branzi, G., & Zanotti, A. L. (1992). Estimate and mapping of airborne pollen sources. Aerobiologia, 8, 69–74.

    Article  Google Scholar 

  • Quirce-Gancedo, S. (2005). Asma. In Sociedad Española de Alergología e inmunología Clínica (SEAIC) y Schering-Plough (Eds.). Alergológica 2005. Factores epidemiológicos, clínicos y socioeconómicos de las enfermedades alérgicas en España (pp. 133–160). Madrid: Egraf, S.A.

  • Reale, L., Sgromo, C., Bonofiglio, T., Orlandi, F., Fornaciari, M., Ferranti, F., & Romano, B. (2006). Reproductive biology of olive (Olea europea L.) DOP Umbria cultivars. Sexual Plant Reproduction, 19, 151–161.

    Article  Google Scholar 

  • Rizzi Longo, L., & Pizzulin Sauli, M. (2010). Flowering phenology and airborne pollen occurrence of Corylus and Castanea in Trieste (Italy), 1991–2004. Acta Botanica Croatica, 69(2), 199–214.

    Google Scholar 

  • Rodríguez-Riaño, T., & Dafni, A. (2000). Anew procedure to asses pollen viability. Sexual Plant Reproduction, 12, 241–244.

    Article  Google Scholar 

  • Roger Ickovic, M., Boussioud-Corbieres, F., Sutra, J. P., & Thibaudon, M. (1989). Hay fever symptoms compared to atmospheric pollen counts and floral phenology within Paris suburban area in 1987 and 1988. Aerobiologia, 5, 30–36.

    Article  Google Scholar 

  • Root, T. L., MacMynowsky, D. P., Mastrandrea, M. D., & Schneider, S. H. (2005). Human-modified temperatures induce species changes: joint attribution. Proceedings of the National Academy of Sciences of the United States of America, 102, 7465–7469.

    Article  CAS  Google Scholar 

  • Rutishauser, T., Luterbacher, J., Defila, C., Frank, D., & Vanner, H. (2008). Swiss spring plant phenology 2007: Extremes, a multi-century perspective, and changes in temperature sensitivity. Geophysical Reseach Letters. doi:10.1029/2007GL032545.

    Google Scholar 

  • Sánchez-Mesa, J. A., Galán, C., & Hervás, C. (2005). The use of discriminant analysis and neural network to forecast the severity of the Poaceae pollen season in a region with a typical Mediterranean climate. International Journal of Biometeorology, 42, 355–362.

    Article  Google Scholar 

  • Satake, A., Kawagoe, T., Saburi, Y., Chiba, Y., Sakurai, G., & Kudoh, H. (2013). Forecasting flowering phenology under climate warming by modelling the regulatory dynamics of flowering-time genes. Nature Communications,. doi:10.1038/ncomms3303.

    Google Scholar 

  • Schwartz, M. D. (1999). Advancing to full bloom: planning phonological research for the 21st century. International Journal of Biometeorology, 42, 113–118.

    Article  Google Scholar 

  • Sedgley, M., & Harbard, J. (1993). Pollen storage and breeding system in relation to controlled pollination of four species of Acacia (Leguminosae, Mimosoideae). Australian Journal of Botany, 41, 601–609.

    Article  Google Scholar 

  • Spano, D., Cesaraccio, C., Duce, P., & Snyder, R. (1999). Phenological stages of natural species and their use as climate indicators. International Journal of Biometeorology, 42, 123–133.

    Article  Google Scholar 

  • SIEMCALSA (1997). Mapa geológico y minero de Castilla y León. Junta de Castilla y León. Consejería de Cultura y Turismo, Valladolid (España).

  • Stennett, P. J., & Beggs, P. J. (2004). Pollen in the atmosphere of Sydney, Australia, and relationships with meteorological parameters. Grana, 43, 209–216.

    Article  Google Scholar 

  • Subba Reddi, C., & Reddi, N. S. (1986). Pollen production in some anemophilous angiosperm in air. Grana, 24, 109–113.

    Article  Google Scholar 

  • Subiza, J., Jerez, M., Jiménez, J. A., Narganes, M. J., Cabrera, M., Valera, S., & Subiza, E. (1995). Clinical aspects of allergic disease. Allergenic pollen and pollinosis in Madrid. The Journal of Allergy and Clinical Immunology, 96, 15–23.

    Article  CAS  Google Scholar 

  • Tackeray, S. J., Sparks, T. H., Frederiksen, M., Burthes, S., Bacon, P. J., Bell, J. R., et al. (2010). Trophic level asynchrony in rates of phenological change for marine, freshwater and terrestrial environments. Global Change Biology, 16, 3304–3313.

    Article  Google Scholar 

  • Tangmitcharoen, S., & Owens, J. N. (1997). Pollen viability and pollen-tube growth following controlled pollination and their relation to low production in teak (Tectonia grandis Linn. F.). Annals of Botany, 80, 401–410.

    Article  Google Scholar 

  • Tormo Molina, R., Silva Palacios, I., Muñoz Rodríguez, A. F., Tavira Muñoz, J., & Moreno Corchero, A. (2001). Environmental factors affecting airborne pollen concentration in anemophilous species of Plantago. Annals of Botany, 87, 1–8.

    Article  Google Scholar 

  • Tormo, R., Silva, I., Gonzalo, A., Moreno, A., Pérez, R., & Fernández, S. (2011). Phenological records as a complement to aerobiological data. International Journal of Biometeorology, 55, 51–65.

    Article  Google Scholar 

  • Trigo, M. M., Recio, M., Toro, F. J., & Cabezudo, B. (1997). Incidencia del polen de “Plantago” en la atmósfera de Málaga y su relación con los parámetros meteorológicos. Acta Botánica Malacitana, 22, 103–113.

    Google Scholar 

  • Van Damme, J. M. M. (1992). Breeding systems in Plantago. In P. J. C. Kuiper & Bos, M. (Eds.), Plantago: A multidisciplinary study (pp. 12–18). New York: Springer.

  • Van Hinsberg, A. (1998). Maternal and ambient environmental effects of light on germination in Plantago lanceolata: correlated responses to selection on leaf length. Functional Ecology, 12, 825–833.

    Article  Google Scholar 

  • Van Tienderen, P. H., & Van Hinsberg, A. (1996). Phenotypic plasticity in growth habit in Plantago lanceolata: how tight is a suite of correlated characters? Plant Species Biology, 11, 87–96.

    Article  Google Scholar 

  • Wielgolaski, F. E. (2001). Phenological modifications in plants by various edaphic factors. International Journal of Biometeorology, 42, 158–168.

    Article  Google Scholar 

  • Wolff, K., & Van Delden, W. (1987). Genetic analysis of ecological relevant morphological variability in Plantago lanceolata L. I. Population characteristics. Heredity, 58, 183–192.

    Article  Google Scholar 

  • Zanotti, A. L., & Puppi, G. (2000). Phenological surveys of allergenic species in the neighborhood of Bologna (Italy). Aerobiologia, 16, 199–206.

    Article  Google Scholar 

  • Zerboni, R., Arrigoni, P. V., Manfredi, M., Rizzotto, M., Paoletti, L., & Ricceri, C. (1991). Geobotanical and phenological monitoring of allergenic pollen grains in the Florence area. Grana, 30, 357–363.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Anne Collins for editing the English text and M. Eva Vallejo Pascual for helping with statistical analysis. This study was supported by Grant CGL2006-15103-C04-03, Department of Science and Technology and Grant LE044A07, Junta de Castilla y León, Spain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zulima González-Parrado.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

González-Parrado, Z., Fernández-González, D., Vega-Maray, A.M. et al. Relationship between flowering phenology, pollen production and atmospheric pollen concentration of Plantago lanceolata (L.). Aerobiologia 31, 481–498 (2015). https://doi.org/10.1007/s10453-015-9377-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10453-015-9377-3

Keywords

Navigation