, Volume 31, Issue 1, pp 1–10 | Cite as

Comparison of Poaceae pollen counts recorded at sites in Portugal, Spain and the UK

  • Santiago Fernández Rodríguez
  • Beverley Adams-Groom
  • Inmaculada Silva Palacios
  • Elsa Caeiro
  • Rui Brandao
  • Raquel Ferro
  • Ángela Gonzalo Garijo
  • Matt Smith
  • Rafael Tormo Molina
Original Paper


The main aim of this study was to analyse the temporal and spatial variations in grass (Poaceae) pollen counts (2005–2011) recorded in Évora (Portugal), Badajoz (Spain) and Worcester (UK). Weekly average data were examined using nonparametric statistics to compare differences between places. On average, Évora recorded the earliest start dates of the Poaceae pollen seasons and Worcester the latest. The intensity of the Poaceae pollen season varied between sites, with Worcester usually recording the least and Évora the most grass pollen in a season. Mean durations of grass pollen seasons were 77 days in Évora, 78 days in Badajoz and 59 days in Worcester. Overall, longer Poaceae pollen seasons coincided with earlier pollen season start dates. Weekly pollen data, from March to September, from the three pollen-monitoring stations studied were compared. The best fit and most statistically significant correlations were obtained by moving Worcester data backward by 4 weeks (Évora, r = 0.810, p < 0.001) and 5 weeks (Badajoz, r = 0.849, p < 0.001). Weekly data from Worcester therefore followed a similar pattern to that of Badajoz and Évora but at a distance of more than 1,500 km and 4–5 weeks later. The sum of pollen recorded in a season was compared with monthly rainfall between January and May. The strongest positive relationship between season intensity and rainfall was between the annual sum of Poaceae pollen recorded in the season at Badajoz and Évora and total rainfall during January and February. Winter rainfall noticeably affects the intensity of Poaceae pollen seasons in Mediterranean areas, but this was not as important in Worcester.


Aerobiology Biogeography Biometeorology Grass pollen season 


  1. AEMET. (2011). Climate statistics. Badajoz Airport (1971–2000). Agencia Estatal de Meteorología. Gobierno de España:
  2. Alba-Sánchez, F., Sabariego-Ruiz, S., Díaz de la Guardia, C., Nieto-Lugilde, D., & De Linares, C. (2010). Aerobiological behaviour of six anemophilous taxa in semi-arid environments of southern Europe (Almería, SE Spain). Journal of Arid Environments, 74(11), 1381–1391.CrossRefGoogle Scholar
  3. Annesi-Maesano, I., Rouve, S., Desqueyroux, H., Jankovski, R., Klossek, J. M., Thibaudon, M., et al. (2012). Grass pollen counts, air pollution levels and allergic rhinitis severity. International Archives of Allergy and Immunology, 158(4), 397–404.CrossRefGoogle Scholar
  4. BAF. (1995). Airborne pollens and spores: A guide to trapping and counting. Aylesford: The British Aerobiology Federation.Google Scholar
  5. Bousquet, J., Anto, J., Auffray, C., Akdis, M., Cambon-Thomsen, A., Keil, T., et al. (2011). MeDALL (Mechanisms of the Development of ALLergy): An integrated approach from phenotypes to systems medicine. Allergy, 66(5), 596–604.CrossRefGoogle Scholar
  6. Bousquet, P.-J., Chinn, S., Janson, C., Kogevinas, M., Burney, P., & Jarvis, D. (2007). Geographical variation in the prevalence of positive skin tests to environmental aeroallergens in the European Community Respiratory Health Survey I. Allergy, 62, 301–309.CrossRefGoogle Scholar
  7. Bousquet, J., Van Cauwenberge, P., Khaltaev, N., Ait-Khaled, N., Annesi-Maesano, I., Baena-Cagnani, C., et al. (2001). Allergic rhinitis and its impact on asthma. Journal of Allergy and Clinical Immunology, 108, S147–S334.CrossRefGoogle Scholar
  8. Brito, F. F., Gimeno, P. M., Carnés, J., Fernández-Caldas, E., Lara, P., Alonso, A. M., et al. (2010). Grass pollen, aeroallergens, and clinical symptoms in Ciudad Real, Spain. Journal of Investigational Allergology and Clinical Immunology, 20(4), 295–302.Google Scholar
  9. Burbach, G. J., Heinzerling, L. M., Edenharter, G., Bachert, C., Bindslev-Jensen, C., Bonini, S., et al. (2009). GA2LEN skin test study II: Clinical relevance of inhalant allergen sensitizations in Europe. Allergy, 64(10), 1507–1515.CrossRefGoogle Scholar
  10. Burr, M. L. (1999). Grass pollen: Trends and predictions. Clinical and Experimental Allergy, 29, 735–738.CrossRefGoogle Scholar
  11. Buters, J. T. M., Thibaudon, M., Smith, M., Kennedy, R., Rantio-Lehtimäki, A., Albertini, R., et al. (2012). Release of Bet v 1 from birch pollen from 5 European countries. Results from the HIALINE study. Atmospheric Environment, 55, 496–505.CrossRefGoogle Scholar
  12. Cariñanos, P., Galán, C., Alcázar, P., & Domínguez, E. (2004). Airborne pollen records response to climatic conditions in arid areas of the Iberian Peninsula. Environmental and Experimental Botany, 52(1), 11–22.CrossRefGoogle Scholar
  13. D’Amato, G. (2000). Urban air pollution and plant derived respiratory allergy. Clinical and Experimental Allergy, 30, 628–636.CrossRefGoogle Scholar
  14. D’Amato, G., Cecchi, L., Bonini, S., Nunes, C., Annesi-Maesano, I., Behrendt, H., et al. (2007). Allergenic pollen and pollen allergy in Europe. Allergy, 62, 976–990.CrossRefGoogle Scholar
  15. DEFRA, Department of Environment, Food and Rural Affairs. (2010). County level crop areas/livestock numbers/labour force: 1905–2010.
  16. Dreissen, M. N. B. M., Van Herpen, R. M. A., Moelands, R. P. M., & Spieksma, F. T. M. (1989). Prediction of the start of the grass pollen season for the western part of the Netherlands. Grana, 28, 37–44.CrossRefGoogle Scholar
  17. Emberlin, J. (1997). Grass tree and weed pollens. In A. B. Kay (Ed.), Allergy and allergic diseases (Vol. 2, pp. 845–857). Oxford: Blackwell Science.Google Scholar
  18. Emberlin, J. (2000). Aerobiology. In W. W. Busse & S. T. Holgate (Eds.), Asthma and rhinitis (Vol. 2, pp. 1083–1105). Oxford: Blackwell Science.CrossRefGoogle Scholar
  19. Emberlin, J., Jaeger, S., Dominguez Vilches, E., Galan Soldevilla, C., Hodal, L., Mandrioli, P., et al. (2000). Temporal and geographical variations in grass pollen seasons in areas of western Europe: And analysis of season dates at sites of the European pollen information system. Aerobiologia, 16, 373–379.CrossRefGoogle Scholar
  20. Emberlin, J., Mullins, J., Cordon, J., Jones, S., Millington, W., Brooke, M., et al. (1999). Regional variations in grass pollen seasons in the UK, long term trends and forecast models. Clinical and Experimental Allergy, 29, 347–356.CrossRefGoogle Scholar
  21. Emberlin, J., Savage, M., & Jones, S. (1993). Annual variations in grass pollen seasons in London 1961–1990: Trends and forecast models. Clinical and Experimental Allergy, 23, 911–918.CrossRefGoogle Scholar
  22. Erbas, B., Akram, M., Dharmage, S. C., Tham, R., Dennekamp, M., Newbigin, E., et al. (2012). The role of seasonal grass pollen on childhood asthma emergency department presentations. Clinical and Experimental Allergy, 42(5), 799–805.CrossRefGoogle Scholar
  23. Fitter, R., Fitter, A., & Farrer, A. (1984). Collins guide to the grasses, sedges, rushes and ferns of Britain and Northern Europe. London: Harper Collins.Google Scholar
  24. Frenguelli, G. (2002). Interactions between climatic changes and allergenic plants. Monaldi Archives of Chest Disease, 57(2), 141–143.Google Scholar
  25. Galán, C., Cariñanos, P., Alcázar, P., & Dominguez-Vilches, E. (2007). Spanish Aerobiology Network (REA) management and quality manual. Servicio de Publicaciones Universidad de Córdoba. ISBN: 978-84-690-6353-8.Google Scholar
  26. Galán, C., Cuevas, J., Infante, F., & Dominguez, E. (1989). Seasonal and diurnal variation of pollen from Gramineae in the atmosphere of Cordoba (Spain). Allergologia et Immunopathologia, 17(5), 245–249.Google Scholar
  27. Galán, C., Emberlin, J., Dominguez, E., Bryant, R., & Villamandos, F. (1995). A comparative analysis of daily variations in the Gramineae pollen counts at Cordoba, Spain and London, UK. Grana, 34, 189–198.CrossRefGoogle Scholar
  28. García-Mozo, H., Galán, C., Belmonte, J., Bermejo, D., Candau, P., Díaz de la Guardia, C., et al. (2009). Predicting the start and peak dates of the Poaceae pollen season in Spain using process-based models. Agricultural and Forest Meteorology, 149(2), 256–262.CrossRefGoogle Scholar
  29. Goudie, A. (1996). The nature of the environment. London: Blackwell.Google Scholar
  30. Grime, J. P., Hodgson, J. G., & Hunt, R. (1996). Comparative plant ecology. London: Chapman and Hall.Google Scholar
  31. Hirst, J. M. (1952). An automatic volumetric spore trap. The Annals of Applied Biology, 39(2), 257–265.CrossRefGoogle Scholar
  32. Hubbard, C. E. (1992). Grasses: A guide to their structure, identification, uses and distribution in the British Isles. Baltimore: Penguin Books.Google Scholar
  33. Laaidi, M. (2001). Forecasting the start of the pollen season of Poaceae: Evaluation of some methods based on meteorological factors. International Journal of Biometeorology, 45, 1–7.Google Scholar
  34. Ladeira, S., Nunes, C., Ferro, R., Martins, M., Caeiro, E., Antunes, C., et al. (2011). Grass and olea airborne pollen allergens in outdoor air samples and its correlation with pollen counts. The Journal of Allergy and Clinical Immunology, 127(2), AB172.CrossRefGoogle Scholar
  35. Latorre, F., & Belmonte, J. (2004). Temporal and spatial distribution of atmospheric Poaceae pollen in Catalonia (NE Spain) in 1996–2001. Grana, 43(3), 156–163.CrossRefGoogle Scholar
  36. León-Ruiz, E., Alcázar, P., Domínguez-Vilches, E., & Galán, C. (2011). Study of Poaceae phenology in a Mediterranean climate. Which species contribute most to airborne pollen counts? Aerobiologia, 27(1), 37–50.CrossRefGoogle Scholar
  37. Liem, A. S. N. (1980). Effects of light and temperature on anthesis of Holcus lanatus, Festuca rubra and Poa annua. Grana, 19(1), 21–29.CrossRefGoogle Scholar
  38. Linés-Escardó, A. (1970). The climate of the Iberian Península. In C. C. Wallen (Ed.), Climates of northern and western Europe (pp. 195–239). Amsterdam: Elsevier.Google Scholar
  39. Mabberley, D. J. (1987). The plant-book: A portable dictionary of the higher plants. Cambridge: Cambridge University Press.Google Scholar
  40. Minero, F., Iglesias, I., Jato, V., Aira, M., Candau, P., Morales, J., et al. (1998). Study of the pollen emissions of Urticaceae, Plantaginaceae and Poaceae at five sites in western Spain. Aerobiologia, 14(2–3), 117–129.CrossRefGoogle Scholar
  41. Munshi, A. H. (2000). Flowering calendar of grasses in Srinagar, Kashmir Himalaya (India). Aerobiologia, 16(3–4), 449–452.CrossRefGoogle Scholar
  42. Preston, C. D., Pearman, D. A., & Dines, T. D. (2002). New atlas of the British and Irish flora. Oxford: Oxford University Press.Google Scholar
  43. Prieto-Baena, J. C., Hidalgo, P. J., Dominguez, E., & Galán, C. (2003). Pollen production in the Poaceae family. Grana, 42, 153–160.CrossRefGoogle Scholar
  44. Recio, M., Docampo, S., García-Sánchez, J., Trigo, M. M., Melgar, M., & Cabezudo, B. (2010). Influence of temperature, rainfall and wind trends on grass pollination in Malaga (western Mediterranean coast). Agricultural and Forest Meteorology, 150(7–8), 931–940.CrossRefGoogle Scholar
  45. Rose, F. (1989). Colour identification guide to the grasses, sedges, rushes and ferns of the British Isles and north-western Europe. London: Viking.Google Scholar
  46. Sánchez-Mesa, J. A., Brandao, R., Lopes, L., & Galán, C. (2005a). Correlation between pollen counts and symptoms in two different areas of the Iberian Peninsula: Cordoba (Spain) and Evora (Portugal). Journal of Investigative Allergology and Clinical Immunology, 15(2), 112–116.Google Scholar
  47. Sánchez-Mesa, J. A., Galán, C., & Hervás, C. (2005b). The use of discriminant analysis and neural networks to forecast the severity of the Poaceae pollen season in a region with a typical Mediterranean climate. International Journal of Biometeorology, 49, 355–362.CrossRefGoogle Scholar
  48. Sánchez-Mesa, J. A., Smith, M., Emberlin, J., Allitt, U., & Caulton, E. (2003). Characteristics of grass pollen seasons in areas of southern Spain and the United Kingdom. Aerobiologia, 19, 243–250.CrossRefGoogle Scholar
  49. Schäppi, G. F., Taylor, P. E., Kenrick, J., Staff, I. A., & Suphioglu, C. (1998). Predicting the grass pollen count from meteorological data with regard to estimating the severity of hayfever symptoms in Melbourne (Australia). Aerobiologia, 14, 29–37.CrossRefGoogle Scholar
  50. Smith, M., Emberlin, J., & Kress, A. (2005). Examining high magnitude grass pollen episodes at Worcester, United Kingdom, using back-trajectory analysis. Aerobiologia, 21(2), 85–94.CrossRefGoogle Scholar
  51. Smith, M., Emberlin, J., Stach, A., Rantio-Lehtimäki, A., Caulton, E., Thibaudon, M., et al. (2009). Influence of the North Atlantic Oscillation on grass pollen counts in Europe. Aerobiologia, 25(4), 321–332.CrossRefGoogle Scholar
  52. Spieksma, F. T. M., Corden, J. M., Detandt, M., Millington, W., Nikkels, H., Nolard, N., et al. (2003). Quantitative trends in annual totals of five common airborne pollen types (Betula, Quercus, Poaceae, Urtica, and Artemisia), at five pollen-monitoring stations in western Europe. Aerobiologia, 19, 171–184.CrossRefGoogle Scholar
  53. Stace, C. (1997). New flora of the British Isles. Cambridge: Cambridge University Press.Google Scholar
  54. Stach, A., Smith, M., Prieto Baena, J. C., & Emberlin, J. (2008). Long-term and short-term forecast models for Poaceae (grass) pollen in Poznań, Poland, constructed using regression analysis. Environmental and Experimental Botany, 62, 323–332.CrossRefGoogle Scholar
  55. Subba Reddi, C., Reddi, N. S., & Atluri Janaki, B. (1988). Circadian patterns of pollen release in some species of Poaceae. Review of Palaeobotany and Palynology, 54(1–2), 11–42.CrossRefGoogle Scholar
  56. Tobías, A., Galán, I., & Banegas, J. R. (2004). Non-linear short-term effects of airborne pollen levels with allergenic capacity on asthma emergency room admissions in Madrid, Spain. Clinical and Experimental Allergy, 34, 871–878.CrossRefGoogle Scholar
  57. Tormo, R., Silva, I., Gonzalo, Á., Moreno, A., Pérez, R., & Fernández, S. (2011). Phenological records as a complement to aerobiological data. International Journal of Biometeorology, 55(1), 51–65.CrossRefGoogle Scholar
  58. Tormo-Molina, R., Munoz-Rodriguez, A., & Silva-Palacios, I. (1996). Sampling in aerobiology. Differences between traverses along the length of the slide in Hirst spore traps. Aerobiologia, 12, 161–166.CrossRefGoogle Scholar
  59. Van Vliet, A. J. H., Overeem, A., De Groot, R., Jacobs, A. F. G., & Spieksma, F. T. M. (2002). The influence of temperature and climate change on the timing of pollen release in The Netherlands. International Journal of Climatology, 22, 1757–1767.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Santiago Fernández Rodríguez
    • 1
  • Beverley Adams-Groom
    • 2
  • Inmaculada Silva Palacios
    • 3
  • Elsa Caeiro
    • 4
    • 5
  • Rui Brandao
    • 5
  • Raquel Ferro
    • 4
    • 5
  • Ángela Gonzalo Garijo
    • 6
  • Matt Smith
    • 7
  • Rafael Tormo Molina
    • 1
  1. 1.Department of Plant Biology, Ecology and Earth Sciences, Faculty of ScienceUniversity of ExtremaduraBadajozSpain
  2. 2.National Pollen and Aerobiology Research UnitUniversity of WorcesterWorcesterUK
  3. 3.Department of Applied Physics, Engineering Agricultural SchoolUniversity of ExtremaduraBadajozSpain
  4. 4.Portuguese Society Allergology Clinical ImmunologyLisbonPortugal
  5. 5.ICAAM - Instituto de Ciências Agrárias e Ambientais MediterrânicasUniversidade de ÉvoraÉvoraPortugal
  6. 6.Section of AllergologyHospital Infanta CristinaBadajozSpain
  7. 7.Department of Oto-Rhino-LaryngologyMedical University of ViennaViennaAustria

Personalised recommendations