, Volume 30, Issue 4, pp 397–411 | Cite as

Atmospheric concentrations of Alternaria, Cladosporium, Ganoderma and Didymella spores monitored in Cork (Ireland) and Worcester (England) during the summer of 2010

  • David J. O’Connor
  • Magdalena Sadyś
  • Carsten A. Skjøth
  • David A. Healy
  • Roy Kennedy
  • John R. SodeauEmail author
Original Paper


This study represents the first international intercomparison of fungal spore observations since 1990, focusing on atmospheric concentrations of Alternaria, Cladosporium, Ganoderma and Didymella spores. The campaigns were performed at sites located in Cork (Ireland) and Worcester (England) during summer 2010. Observations were made using Hirst-type volumetric spore traps and corresponding optical identification at the genus level by microscope. The measurements at both sites (including meteorological parameters) were compared and contrasted. The relationships between the fungal spore concentrations with selected meteorological parameters were investigated using statistical methods and multivariate regression trees (MRT). The results showed high correlations between the two sites with respect to daily variations. Statistically significant higher spore concentrations for Alternaria, Cladosporium and Ganoderma were monitored at the Worcester site. This result was most likely due to the differences in precipitation and local fungal spore sources at the two sites. Alternaria and Cladosporium reached their maxima a month earlier in Cork than in Worcester, and Didymella with Ganoderma peaked simultaneously with similar diurnal trends found for all the investigated spore types. MRT analysis helped to determine threshold values of the meteorological parameters that exerted most influence on the presence of spores: they were found to vary at the two sites. Our results suggest that the aeromycological profile is quite uniform over the British Isles, but a description of bioaerosols with respect to overall load and daily concentration can be quite diverse although the geographical difference between sites is relatively small. These variations in the concentrations therefore need to be explored at the national level.


Aerobiology Fungal spores Air monitoring Meteorological parameters Outdoor environment Multivariate regression tree 



We would like to thank University College Cork (Ireland) and the National Pollen and Aerobiology Research Unit at the University of Worcester (England) for jointly funding this project. We would also like to thank Beverley-Adams Groom and Dr. Danuta Stępalska for providing individual training in the process of fungal spore identification. We would like to thank Dr. Agnieszka Strzelczak and Dr. Agnieszka Grinn-Gofroń for providing training in the construction of Multivariate Regression Tree models. Finally, thanks go to Evelyn and Barry Healy for providing the secure Cork monitoring site.

Supplementary material

10453_2014_9337_MOESM1_ESM.doc (70 kb)
Supplementary material 1 (DOC 69 kb)


  1. Ataygul, E., Celenk, S., Canitez, Y., Bicakci, A., Malyer, H., & Sapan, N. (2007). Allergenic fungal spore concentrations in the atmosphere of Bursa, Turkey. Journal of Biological & Environmental Sciences, 1(2), 73–79.Google Scholar
  2. Breitenbach, M., Crameri, R., & Lehrer, S. B. (2002). Fungal allergy and pathogenicity. Basel: Krager.Google Scholar
  3. Cavan, G., Alston, E., & Thornes, J. (2004). Worcestershire climate change impact study, summary report. Worcester: Worcester County Council.Google Scholar
  4. Corden, J. M., & Millington, W. M. (1994). Didymella ascospores in Derby. Grana, 33(2), 104–107.CrossRefGoogle Scholar
  5. Corden, J. M., Millington, W. M., & Mullins, J. (2003). Long-term trends and regional variation in the aeroallergen Alternaria in Cardiff and Derby UK—Are differences in climate and cereal production having an effect? Aerobiologia, 19, 191–199.CrossRefGoogle Scholar
  6. Craig, R. L., & Levetin, E. (2000). Multi-year study of Ganoderma aerobiology. Aerobiologia, 16(1), 75–81.CrossRefGoogle Scholar
  7. Cui, Y. (2009). Adaptation of the ballitospore discharge mechanism among poroid Agaricomycetes. Master thesis, Oxford: Miami University.Google Scholar
  8. Davies, R. R. (1957). A study of air-borne Cladosporium. Transactions of the British Mycological Society, 40(3), 409–414.CrossRefGoogle Scholar
  9. De’ath, G. (2002). Multivariate regression trees: A new technique for modeling species–environment relationship. Ecology, 83, 1105–1117.Google Scholar
  10. De’ath, G., & Fabricius, K. E. (2000). Classification and regression trees: A powerful and yet simple technique for ecological data analysis. Ecology, 81, 3178–3192.CrossRefGoogle Scholar
  11. Douwes, J., Thorne, P., Pearce, N., & Heederik, D. (2003). Bioaerosol health effects and exposure assessment: Progress and prospects. Annals of Occupational Hygiene, 47(3), 187–200.CrossRefGoogle Scholar
  12. Elbert, W., Taylor, P. E., Andreae, M. O., & Pöschl, U. (2007). Contribution of fungi to primary biogenic aerosols in the atmosphere: Wet and dry discharged spores, carbohydrates, and inorganic ions. Atmospheric Chemistry and Physics, 7, 4569–4588.CrossRefGoogle Scholar
  13. Frankland, A. W., & Gregory, P. H. (1973). Allergenic and agricultural implications of airborne ascospore concentrations from a fungus, Didymella exitialis. Nature, 245, 336–337.CrossRefGoogle Scholar
  14. Grinn-Gofroń, A., & Strzelczak, A. (2009). Hourly predictive artificial neural network and multivariate regression tree models of Alternaria and Cladosporium spore concentrations in Szczecin. International Journal of Biometeorology, 55, 235–241.CrossRefGoogle Scholar
  15. Grinn-Gofroń, A., & Strzelczak, A. (2011). The effects of meteorological factors on the occurrence of Ganoderma sp. spores in the air. International Journal of Biometeorology, 55, 235–241.CrossRefGoogle Scholar
  16. Harries, M. G., Lacey, J., Tee, R. D., Cayley, G. R., & Newman Taylor, A. J. (1985). Didymella exitialis and late summer asthma. The Lancet, 1(8437), 1063–1066.CrossRefGoogle Scholar
  17. Harvey, R. (1967). Air-spora studies at Cardiff. I. Cladosporium. Transactions of the British Mycological Society, 50(3), 479–495.CrossRefGoogle Scholar
  18. Hirst, J. (1952). An automatic volumetric spore trap. Annals of Applied Biology, 39, 257–265.CrossRefGoogle Scholar
  19. Hollins, P. D., Kettlewell, P. S., Atkinson, M. D., Stephenson, D. B., Corden, J. M., Millington, W. M., et al. (2004). Relationships between airborne fungal spore concentration of Cladosporium and the summer climate at two sites in Britain. International Journal of Biometeorology, 48(3), 137–141.CrossRefGoogle Scholar
  20. Horner, W. E., Helbling, A., Salvaggio, J. E., & Lehrer, S. B. (1995). Fungal allergens. Clinical Microbiology Reviews, 8(2), 161–179.Google Scholar
  21. Kasprzyk, I. (2006). Diurnal variations of fungal spores concentration in the town and rural area. Acta Agrobotanica, 59, 395–404.CrossRefGoogle Scholar
  22. Kasprzyk, I., Grinn-Gofroń, A., Strzelczak, A., & Wolski, T. (2011). Hourly predictive artificial neural network and multivariate regression trees models of Ganoderma spore concentrations in Rzeszów and Szczecin (Poland). Science of the Total Environment, 409, 949–956.CrossRefGoogle Scholar
  23. Lacey, M. E. (1962). The summer air-spora of two contrasting adjacent rural sites. Journal of General Microbiology, 29, 485–501.CrossRefGoogle Scholar
  24. Lacey, J. (1997). Fungi and Actinomycetes as allergens. In A. B. Kay (Ed.), Allergy and allergic diseases (pp. 858–886). Oxford: Blackwell Science.Google Scholar
  25. Lacey, J., & Allitt, U. (1995). Airborne pollen and spores, a guide to trapping and counting. Harpenden: The British Aerobiology Federation.Google Scholar
  26. Lacey, M. E., & West, J. (2006). The air spora: A manual for catching and identifying airborne biological particles. Dordrecht: Springer.CrossRefGoogle Scholar
  27. Langenberg, W. J., Sutton, J. C., & Gillespie, T. J. (1977). Relation to weather variables and periodicities of airborne spores of Alternaria dauci. Phytopathology, 67, 879–883.CrossRefGoogle Scholar
  28. Lewis, S. A., Corden, J. M., Forster, G. E., & Newlands, M. (2000). Combined effects of aerobiological pollutants, chemical pollutants and meteorological conditions on asthma admissions and A & E attendances in Derbyshire UK, 1993–96. Clinical and Experimental Allergy, 30(12), 1724–1732.CrossRefGoogle Scholar
  29. McDonald, M. S. (1980). Correlation of airborne grass pollen levels with meteorological data. Grana, 19(1), 53–56.CrossRefGoogle Scholar
  30. McDonald, M. S., & O’Driscoll, B. J. (1980). Aerobiological studies based in Galway. A comparison of pollen and spore counts over two seasons of widely different weather conditions. Clinical Allergy, 10, 211–215.CrossRefGoogle Scholar
  31. Met Office. (2012). Midlands: Climate. Accessed 21 May 2013.
  32. Nasser, S. M., & Pulimood, T. B. (2009). Allergens and thunderstorm asthma. Current allergy and asthma reports, 9(5), 384–390.CrossRefGoogle Scholar
  33. O’Gorman, C. M., & Fuller, H. T. (2008). Prevalence of culturable airborne spores of selected allergenic and pathogenic fungi in outdoor air. Atmospheric Environment, 42(18), 4355–4368.CrossRefGoogle Scholar
  34. Ostro, B., Lipsett, M., Mann, J., Braxton-Owens, H., & White, M. (2001). Air pollution and exacerbation of asthma in African-American children in Los Angeles. Epidemiology, 12(2), 200–208.CrossRefGoogle Scholar
  35. Packe, G. E., & Ayres, J. G. (1985). Asthma outbreak during a thunderstorm. The Lancet, 326(8448), 199–203.CrossRefGoogle Scholar
  36. Pegler, D. N., & Young, T. W. K. (1973). Basidiospore form in the British species of Ganoderma. Kew Bulletin, 28, 351–364.CrossRefGoogle Scholar
  37. Peternel, R., Čulig, J., & Hrga, I. (2004). Atmospheric concentrations of Cladosporium spp. and Alternaria spp. spores in Zagreb (Croatia) and effects of some meteorological factors. Annals of Agricultural and Environmental Medicine, 11, 303–307.Google Scholar
  38. Rice, M. (2011). Worcestershire demographic report 2011 with South Worcestershire Appendix. Worcester: Worcestershire County Council.Google Scholar
  39. Richardson, M. J. (1996). The occurrence of airborne Didymella spores in Edinburgh. Mycological Research, 100, 213–216.CrossRefGoogle Scholar
  40. Rodríguez-Rajo, F. J., Iglesias, I., & Jato, V. (2005). Variation assessment of airborne Alternaria and Cladosporium spores at different bioclimatical conditions. Mycological Research, 109(4), 497–507.CrossRefGoogle Scholar
  41. Skjøth, C. A., Smith, M., Šikoparija, B., Stach, A., Myszkowska, D., Kasprzyk, I., et al. (2010). A method for producing airborne pollen source inventories: An example of Ambrosia (ragweed) on the Pannonian Plain. Agricultural and Forest Meteorology, 150, 1203–1210.CrossRefGoogle Scholar
  42. Skjøth, C. A., Sommer, J., Frederiksen, L., & Gosewinkel Karlson, U. (2012). Crop harvest in Denmark and Central Europe contributes to the local load of airborne Alternaria spore concentrations in Copenhagen. Atmospheric Chemistry and Physics, 12, 11107–11123.CrossRefGoogle Scholar
  43. Sreeramulu, T. (1963). Observations on the periodicity in the air-borne spores of Ganoderma applanatum. Mycologia, 55(4), 371–379.CrossRefGoogle Scholar
  44. Stępalska, D., Grinn-Gofroń, A., & Piotrowicz, K. (2012). Occurrence of Didymella ascospores in western and southern Poland in 2004–2006. Aerobiologia, 28(2), 153–159.CrossRefGoogle Scholar
  45. Stępalska, D., & Wołek, J. (2005). Variation in fungal spore concentrations of selected taxa associated to weather conditions in Cracow, Poland, in 1997. Aerobiologia, 21, 43–52.CrossRefGoogle Scholar
  46. Stępalska, D., & Wołek, J. (2009). Intradiurnal periodicity of fungal spore concentrations (Alternaria, Botrytis, Cladosporium, Didymella, Ganoderma) in Cracow, Poland. Aerobiologia, 25, 333–340.CrossRefGoogle Scholar
  47. Stephen, E., Raftery, A. E., & Dowding, P. (1990). Forecasting spore concentrations: A time series approach. International Journal of Biometeorology, 34, 87–89.CrossRefGoogle Scholar
  48. Tarlo, S. M., Bell, B., Srinivasan, J., Dolovich, J., & Hargreave, F. E. (1979). Human sensitization to Ganoderma antigen. Journal of allergy and Clinical Immunology, 64, 43–49.CrossRefGoogle Scholar
  49. Trapero-Casas, A., Navas-Cortés, J. A., & Jiménez-Díaz, R. M. (1996). Airborne ascospores of Didymella rabiei as a major primary inoculum for Ascochyta blight epidemics in chikpea crops in southern Spain. European Journal of Plant Pathology, 102, 237–245.CrossRefGoogle Scholar
  50. Trigo del Mar, M., Toro, F. J., Recio, M., & Cabezudo, B. (2000). A statistical approach to comparing the results from different aerobiological stations. Grana, 39, 252–258.CrossRefGoogle Scholar
  51. Urbano, R., Palenik, B., Gaston, C. J., & Prather, K. A. (2011). Detection and phylogenetic analysis of coastal bioaerosols using culture dependent and independent techniques. Biogeosciences, 8, 301–309.CrossRefGoogle Scholar
  52. Vittal, B. P. R., & Krishnamoorthi, K. (1989). Circadian and seasonal periodicities of some mold allergens in the atmosphere of Madras city (India). Proceedings: Plant Sciences, 99(3), 247–251.Google Scholar
  53. von Wahl, P.-G., & Kersten, W. (1991). Fusarium and Didymella—Neglected spores in the air. Aerobiologia, 7, 111–117.CrossRefGoogle Scholar
  54. Wallace, J. M., & Hobbs, P. V. (1977). Atmospheric Science. An introductory survey. London: Academic Press Limited.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • David J. O’Connor
    • 1
  • Magdalena Sadyś
    • 2
  • Carsten A. Skjøth
    • 2
  • David A. Healy
    • 1
  • Roy Kennedy
    • 2
  • John R. Sodeau
    • 1
    Email author
  1. 1.Department of Chemistry and Environmental Research InstituteUniversity College CorkCorkIreland
  2. 2.National Pollen and Aerobiology Research UnitUniversity of WorcesterWorcesterUK

Personalised recommendations