Advertisement

Aerobiologia

, Volume 30, Issue 4, pp 385–395 | Cite as

Pollen monitoring: minimum requirements and reproducibility of analysis

  • C. Galán
  • M. Smith
  • M. Thibaudon
  • G. Frenguelli
  • J. Oteros
  • R. Gehrig
  • U. Berger
  • B. Clot
  • R. Brandao
  • EAS QC Working Group
Original Paper

Abstract

Training, quality assurance (QA) and quality control (QC) play an important role in building competence in monitoring and research in aerobiology. The main goals of this paper were to: (a) formulate an updated Minimum Requirements Report for pollen monitoring; (b) carry out a pilot QC exercise of staff involved in pollen counting from various national networks in order to examine between analysts reproducibility and develop a methodology that can be used in future QC exercises. A questionnaire survey was sent to coordinators of participating pollen monitoring networks. In addition, a total of 45 technicians from 15 European countries participated in the pilot QC exercise. All technicians were instructed to analyse two slides containing the following pollen types: (a) Poaceae and Betula pollen grains in the north of Europe; (b) Poaceae and Olea pollen grains in the south of Europe. Minimum Recommendations were produced based on the results of the questionnaire survey, published literature, and the outcomes of a workshop. In the QC exercise, it was noticed that technicians who followed the Minimum Recommendations and examined at least 10 % of the slide tended to have better indicators of precision and accuracy than those technicians who did not follow the Minimum Recommendations. The proposed Minimum Recommendations will help to improve the quality of scientific work, particularly for those who are considering the setting up of new monitoring sites. The results of the pilot QC exercise will help to develop a methodology that can be used again in the future, thereby ensuring data quality.

Keywords

Aerobiology Quality assurance Quality control Questionnaire 

Notes

Acknowledgments

The authors would like to thank the EAS QC Working Group, for their important contribution on this topic in the frame of the European Aerobiology Society (EAS), and also to all counters from different institutions involved in the QC exercise: Aerobiology Laboratuary of Uludag University, Bursa, Turkey; Austrian Pollen Information Service; Croatian National Institute of Public Health; Finnish Pollen Network; German Pollen Information Service; Italian Aerobiological Association; Environment Protection Agency of Bolzano, Italy; Laboratory for Palynology in Novi Sad, Serbia; MeteoSwiss; Polish Aerobiology Network; Portuguese Aerobiology Network; Réseau National de Surveillance Aérobiologique; Spanish Aerobiology Network; UK Pollen and Aerobiology Research Unit; Ukrainian Association of Aerobiologists; University of Macedonia.

References

  1. Abraira V. (2002a). Desviación estándar y error estándar. Notas estadísticas, 28, 621–623.Google Scholar
  2. Abraira V. (2002b). Estimación: intervalos de confianza. Notas estadísticas, 28, 84–85.Google Scholar
  3. Albertini, R., Brighetti, M. A., Galán C., Torrigiani- Malaspina, T., Manfredi, M., Marcer M., et al. (2009). Manuale di Gestione e Qualità della Rete Italiana di Monitoraggio in Aerobiologia. R.I.M.A. ® Associazione Italiana di Aerobiologia®, a cura di Travaglini A., Albertini R., Zieger E. L.E.G.O., OZZANO EMILIA (BO).Google Scholar
  4. Alcázar, P., Galán, C., Cariñanos, P., & Domínguez-Vilches, E. (1999). Diurnal variation of airborne pollen at two different heights. Journal of Investigational Allergology and Clinical Immunology, 9, 89–95.Google Scholar
  5. BAF. (1995). Airborne pollens and spores: A guide to trapping and counting. The British Aerobiology Federation: Aylesford. ISBN 0-9525617-0-0.Google Scholar
  6. Berti, G., Isocrono, D., Ropolo, L., Caranci, N., Cesare, M. R., Fossa, V., et al. (2009). An experience of data quality evaluation in pollen monitoring activities. Journal of Environmental Monitoring, 11, 788–792.CrossRefGoogle Scholar
  7. Cariñanos, P., Emberlin, J., Galan, C., & Dominguez-Vilches, E. (2000). Comparison of two pollen counting methods of slides from a Hirst type volumetric trap. Aerobiologia, 16, 339–346.CrossRefGoogle Scholar
  8. Carvalho, E., Sindt, C., Verdier, A., Galan, C., O’Donoghue, L., Parks, S., et al. (2008). Performance of the Coriolis air sampler, a high-volume aerosol-collection system for quantification of airborne spores and pollen grains. Aerobiologia, 24, 191–201.CrossRefGoogle Scholar
  9. Comtois, P., Alcazar, P., & Néron, D. (1999). Pollen counts statistics and its relevance to precision. Aerobiologia, 15, 19–28.CrossRefGoogle Scholar
  10. Comtois, P., & Mandrioli, P. (1997). Pollen capture media: A comparative study. Aerobiologia, 13, 149–154.CrossRefGoogle Scholar
  11. EAS QC Working Group. (2011). Minimum requirements to manage aerobiological monitoring stations included in a national network involved in the EAN. IAA Newsletter, 72, 1.Google Scholar
  12. Galán, C. (2009). Summary of minutes: Quality control workshop minutes August 14th, 2008. In 4th ESA 2008 European symposium on aerobiology. Turku (Finland). IAA Newsletter (Vol. 67, p. 7).Google Scholar
  13. Galán, C. (2010). EAS QC Group. IAA Newsletter, 69, 7.Google Scholar
  14. Galán, C., Cariñanos, P., Alcázar, P., & Domínguez-Vilches, E. (2007). Spanish aerobiology network (REA): Management and quality manual. Córdoba: Servicio de publicaciones de la Universidad de Córdoba.Google Scholar
  15. Galán, C., & Domínguez-Vilches, E. (1997). The capture media in aerobiological sampling. Aerobiologia, 13, 155–160.CrossRefGoogle Scholar
  16. Galán, C., Emberlin, J., Domínguez, E., Bryant, R. H., & Villamandos, F. (1995). A comparative-analysis of daily variations in the Gramineae pollen counts at Córdoba, Spain and London, UK. Grana, 34, 189–198.CrossRefGoogle Scholar
  17. Gottardini, E., Cristofolini, F., Cristofori, A., Vannini, A., & Ferretti, M. (2009). Sampling bias and sampling errors in pollen counting in aerobiological monitoring in Italy. Journal of Environmental Monitoring, 11, 751–755.CrossRefGoogle Scholar
  18. Hirst, J. M. (1952). An automatic volumetric spore trap. Annals of Applied Biology, 39(2), 257–265.CrossRefGoogle Scholar
  19. ISO 5725. (1994). Accuracy (trueness and precision) of measurement methods and results.Google Scholar
  20. Jäger, S., Mandroli, P., Spieksma, F., Emberlin, J., Hjelmroos, M., Rantio-Lehtimaki, A., et al. (1995). News. Aerobiologia, 11, 69–70.CrossRefGoogle Scholar
  21. Jato, V., Rodriguez-Rajo, F. J., Alcazar, P., de Nuntiis, P., Galan, C., & Mandrioli, P. (2006). May the definition of pollen season influence aerobiological results? Aerobiologia, 22, 13–25.CrossRefGoogle Scholar
  22. Käpylä, M. (1989). Adhesives and mounting media in aerobiological sampling. Grana, 28, 215–218.CrossRefGoogle Scholar
  23. Käpylä, M., & Penttinen, A. (1981). An evaluation of the microscopical counting methods of the tape in Hirst-Burkard pollen and spore trap. Grana, 20, 131–141.CrossRefGoogle Scholar
  24. Leuschner, R. M. (1999). Comparison between pollen counts at ground and at roof level in Basel (Switzerland). Aerobiologia, 15, 143–147.CrossRefGoogle Scholar
  25. Mäkinen, Y. (1981). Random sampling in the study of atmospheric slides. Rep Aerobiology Laboratory Turku University, 5, 27–43.Google Scholar
  26. Mandrioli, P. (1994). Metodica di campionamento dei granuli pollinici e delle spore fungine aerodisperse. In Monitoraggio aerobiologico in Emilia-Romagna. Collana “Contributi”, Regione Emilia-Romagna.Google Scholar
  27. Mandrioli, P., Comtois, P., Domínguez-Vilches, E., Galán-Soldevilla, C., Syzdek, L. D., & Isard, S. A. (1998). Sampling: Principles and techniques. In P. Mandrioli, P. Comtois, & V. Levizzani (Eds.), Methods in aerobiology (p. 261). Bologna: Pitagora Editrice.Google Scholar
  28. Mandrioli, P., & Puppi, G. (1978). Method for sampling airborne pollen grains and fungal spores. In Aerobiological Monitoring in the Emilia-Romagna Region. Series “Studies and Documentation” (Vol. 13, p. 79). Regione Emilia-Romagna press (in Italian).Google Scholar
  29. Ogden, E. C., Raynor, G. S., Hayes, J. V., Lewis, D. M., & Haines, J. H. (1976). Manual for sampling airborne pollen. New York: Hafner Press.Google Scholar
  30. Oteros, J., Galán, C., Alcázar, P., & Domínguez-Vilches, E. (2013). Quality control in bio-monitoring networks, Spanish Aerobiology Network. Science of the Total Environment, 443, 559–565.CrossRefGoogle Scholar
  31. PAACB (Pan American Aerobiology Certification Board) (2003). Certification program for spore analysts. http://www.paaa.org/paacb.html.
  32. Pedersen, B., & Moseholm, L. (1993). Precision of the daily pollen count. Identifying sources of variation using variance component models. Aerobiologia, 9, 15–26.CrossRefGoogle Scholar
  33. Rantio-Lehtimäki, A., Koivikko, A., Kupias, R., Mäkinen, Y., & Pohjola, A. (1991). Significance of sampling height of airborne particles for aerobiological information. Allergy, 46, 68–76.CrossRefGoogle Scholar
  34. Scheifinger, H., Belmonte, J., Celenk, S., Damialis, A., Dechamp, C., Garcia-Mozo, H., et al. (2013). Monitoring, modelling and forecasting of the pollen season. In M. Sofiev & K. Bergmann (Eds.), Allergenic pollen: A review of the production, release, distribution and health impact. The Netherlands: Springer.Google Scholar
  35. Sikoparija, B., Pejak-Sikoparija, T., Radisic, P., Smith, M., & Galán, C. (2011). The effect of changes to the method of estimating the pollen count from aerobiological samples. Journal of Environmental Monitoring, 13, 384–390.CrossRefGoogle Scholar
  36. Siljamo, P., Sofiev, M., Filatova, E., Grewling, Ł., Jäger, S., Khoreva, E., et al. (2013). A numerical model of birch pollen emission and dispersion in the atmosphere. Model evaluation and sensitivity analysis. International Journal of Biometeorology, 57(1), 125–136.CrossRefGoogle Scholar
  37. Sofiev, M., Siljamo, P., Ranta, H., Linkosalo, T., Jaeger, S., Rasmussen, A., et al. (2013). A numerical model of birch pollen emission and dispersion in the atmosphere. Description of the emission module. International Journal of Biometeorology, 57(1), 45–58.CrossRefGoogle Scholar
  38. Spetz, G. (1995). Improving precision of rubber test methods: Part 3—Tensile test. Polymer Testing, 14, 13–34.CrossRefGoogle Scholar
  39. Spieksma, F. T. M., van Noort, P., & Nikkels, H. (2000). Influence of nearby stands of Artemisia on the street-level versus roof-top-level ratio’s airborne pollen quantities. Aerobiologia, 16, 21–24.CrossRefGoogle Scholar
  40. Starink, R. J., & Visser, R. G. (2010). Interlaboratory studies: Protocol for the organisation, statistics and evaluation. Institute for Interlaboratory Studies (I.I.S.). The Netherlands.Google Scholar
  41. Tormo, R., Munoz, A., & Silva, I. (1996). Sampling in aerobiology. Differences between traverses along the length of the slide in Hirst spore trap. Aerobiologia, 12, 161–166.CrossRefGoogle Scholar
  42. Velasco-Jiménez, M. J., Alcázar, P., Domínguez-Vilches, E., & Galán, C. (2013). Comparative study of airborne pollen counts located in different areas of the city of Cordoba (south-western Spain). Aerobiologia, 29(1), 113–120.CrossRefGoogle Scholar
  43. Vogel, H., Pauling, A., & Vogel, B. (2008). Numerical simulation of birch pollen dispersion with an operational weather forecast system. International Journal of Biometeorology, 52, 805–814.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • C. Galán
    • 1
  • M. Smith
    • 2
  • M. Thibaudon
    • 3
  • G. Frenguelli
    • 4
  • J. Oteros
    • 1
  • R. Gehrig
    • 5
  • U. Berger
    • 2
  • B. Clot
    • 5
  • R. Brandao
    • 6
  • EAS QC Working Group
  1. 1.Department of Botany, Ecology and Plant Physiology, International Campus of Excellence on Agreefood (ceiA3)University of CórdobaCórdobaSpain
  2. 2.Research Group Aerobiology and Pollen Information, Department of Oto-Rhino-LaryngologyMedical University of ViennaViennaAustria
  3. 3.Reseau National de Surveillance Aerobiologique (RNSA)BrussieuFrance
  4. 4.Department of Plant BiologyUniversity of PerugiaPerugiaItaly
  5. 5.Federal Office of Meteorology and Climatology MeteoSwissZurichSwitzerland
  6. 6.ICAAM - Instituto de Ciências Agrárias e Ambientais MediterrânicasUniversidade de ÉvoraÉvoraPortugal

Personalised recommendations