Advertisement

Aerobiologia

, Volume 30, Issue 1, pp 103–109 | Cite as

Aerobiological sampling efficiency of media-containing Petri plates for use in lower atmosphere spore collection

  • Melissa D. Keller
  • Elson J. Shields
Brief Communication

Abstract

Petri plates (PP) containing volumes of media attached to unmanned aircraft systems (UAS) have been used to trap atmospheric biota for years. If capture efficiency varies based on media volume used, aerial concentrations of biota may be poorly estimated after an UAS flight occurs. We conducted 36 separate sampling flights in which PP were filled either with media to maximum volume or half the maximum volume to determine efficiency of each in the collection of viable spores from the genus Fusarium in the lower atmosphere. Overall, the media at maximum volume collected 56 % more spores than the media at half-volume when analyzing the average collection for all flights. In research that relies on quantification of an aerial biota source, UAS equipped with media-containing plates filled with less than maximum volume will hinder spore collection efficiency.

Keywords

Fusarium Aerial sampling Unmanned aircraft systems Spore capture 

Notes

Acknowledgments

We thank Antonio Testa and John Cianchetti for both their excellent technical assistance and piloting efforts and Jing Yang for her statistical expertise. The authors gratefully acknowledge Donald Aylor for his helpful comments.

References

  1. Anonymous. (2013). Unmanned aircraft systems (UAS): Fact sheet. Federal Aviation Administration. http://www.faa.gov/news/fact_sheets/news_story.cfm?newsId=14153.
  2. Aylor, D. E. (1986). A framework for examining inter-regional aerial transport of fungal spores. Journal of Agricultural and Forest Meteorology, 38, 263–288.CrossRefGoogle Scholar
  3. Aylor, D. E. (1998). The aerobiology of apple scab. Plant Disease, 82, 838–849.CrossRefGoogle Scholar
  4. Aylor, D. E., Boehm, M. T., & Shields, E. J. (2006). Quantifying aerial concentrations of maize pollen in the atmospheric surface layer using remote-piloted airplanes and Lagrangian stochastic modeling. Journal of Applied Meteorology and Climatology, 45, 1003–1015.CrossRefGoogle Scholar
  5. Aylor, D. E., Schmale, D. G, I. I. I., Shields, E. J., Newcomb, M., & Nappo, C. J. (2011). Tracking the late blight pathogen in the atmosphere using unmanned aerial vehicles and Lagrangian modeling. Journal of Agricultural and Forest Meteorology, 151, 251–260.CrossRefGoogle Scholar
  6. Burgess, L. W., Summerell, B. A., Bullock, S., Gott, K. P., & Backhouse, D. (1994). Laboratory manual for fusarium research. New South Wales, Australia: University of Sydney.Google Scholar
  7. Cox, C. S. (1987). The aerobiological pathway of microorganisms. Chichester: John Wiley & Sons.Google Scholar
  8. Dauer, J. T., Mortensen, D. A., Luschei, E. C., Isard, S. A., Shields, E., & Van-Gessel, M. J. (2009). Conyza canadensis seed ascent in the lower atmosphere. Journal of Agricultural and Forest Meteorology, 149, 526–534.CrossRefGoogle Scholar
  9. DeLeon-Rodriguez, N., Lathem, T. L., Rodriguez-R, L. M., Barazesh, J. M., Anderson, B. E., Beyersdorf, A. J., et al. (2013). Microbiome of the upper troposphere: Species composition and prevalence, effects of tropical storms, and atmospheric implications. Proceedings of the National Academy of Sciences, 110, 2575–2580.CrossRefGoogle Scholar
  10. FAA. (2012). Modernization and Reform Act of 2012. One Hundred Twelfth Congress of the United States of America. H.R. 658. http://www.gpo.gov/fdsys/pkg/BILLS-112hr658enr/pdf/BILLS-112hr658enr.pdf.
  11. Isard, S. A., & Gage, S. H. (2001). Flow of life in the atmosphere (p. 240). East Lansing: Michigan State University Press.Google Scholar
  12. Kelly, C. D., Pady, S. M., & Polunin, N. (1951). Aerobiological sampling methods from aircraft. Canadian Journal of Botany, 29, 206–214.CrossRefGoogle Scholar
  13. Leslie, J. F., & Summerell, B. A. (2006). The fusarium laboratory manual. Ames, Iowa: Blackwell Publishing.CrossRefGoogle Scholar
  14. Lin, B., Bozorgmagham, A., Ross, S. D., & Schmale, D. G, I. I. I. (2013). Small fluctuations in the recovery of Fusaria across consecutive sampling intervals with unmanned aircraft 100 m above ground level. Aerobiologia, 29, 45–54.CrossRefGoogle Scholar
  15. Maldonado-Ramirez, S. L., Schmale, D. G, I. I. I., Shields, E. J., & Bergstrom, G. C. (2005). The relative abundance of viable spores of Gibberella zeae in the planetary boundary layer suggests the role of long-distance transport in regional epidemics of Fusarium head blight. Journal of Agricultural and Forest Meteorology, 132, 20–27.CrossRefGoogle Scholar
  16. Pedgley, D. E. (1985). Concepts in atmospheric science as they relate to the movement of biotic agents. In D. R. MacKenzie, C. S. Barfield, G. G. Kennedy, & R. D. Berger (Eds.), The movement and dispersal of agriculturally important biotic agents (pp. 175–178). Baton Rouge: Claitors Publishing Division.Google Scholar
  17. Rabb, R. L. (1985). Conceptual bases to develop and use information on the movement and dispersal of biotic agents in agriculture. In D. R. MacKenzie, C. S. Barfield, G. G. Kennedy, & R. D. Berger (Eds.), The movement and dispersal of agriculturally important biotic agents (pp. 5–34). Baton Rouge: Claitors Publishing Division.Google Scholar
  18. Schmale, D. G, I. I. I., Arnsten, Q. A., & Bergstrom, G. C. (2005). The forcible discharge distance of ascospores of Gibberella zeae. Canadian Journal of Plant Pathology, 27, 376–382.CrossRefGoogle Scholar
  19. Schmale, D. G, I. I. I., & Bergstrom, G. C. (2004). Spore deposition of the ear rot pathogen, Gibberella zeae, inside corn canopies. Canadian Journal of Plant Pathology, 26, 591–595.CrossRefGoogle Scholar
  20. Schmale, D. G, I. I. I., Ross, S. D., Fetters, T. L., Tallapragada, P., Wood-Jones, A. K., & Dingus, B. (2012). Isolates of Fusarium graminearum collected 40–320 meters above ground level cause Fusarium head blight in wheat and produce trichothecene mycotoxins. Aerobiologia, 28, 1–11.CrossRefGoogle Scholar
  21. Shields, E. J., Dauer, J. T., VanGessel, M. J., & Neumann, G. (2006). Horseweed (Conyza canadensis) seed collected in the planetary boundary layer. Weed Science, 54, 1063–1067.CrossRefGoogle Scholar
  22. Shields, E. J., & Testa, A. (1999). Fall migratory flight initiation of the potato leafhopper, Empoasca fabae (Harris) (Homoptera: Cicadellidae): Observations in the lower atmosphere using remote piloted vehicles. Journal of Agricultural and Forest Meteorology, 97, 317–330.CrossRefGoogle Scholar
  23. Sparks, A. N., Westbrook, J. K., Wolf, W. W., Pair, S. D., & Raulston, J. R. (1985). Atmospheric transport of biotic agents on a local scale. In D. R. MacKenzie, C. S. Barfield, G. G. Kennedy, & R. D. Berger (Eds.), The movement and dispersal of agriculturally important biotic agents (pp. 203–217). Baton Rouge: Claitors Publishing Division.Google Scholar
  24. Stakman, E. C., Henry, A. W., Curran, G. C., & Christopher, W. N. (1923). Spores in the upper air. Journal of Agricultural Research, 24, 599–606.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Department of EntomologyCornell UniversityIthacaUSA

Personalised recommendations