Aerobiologia

, Volume 29, Issue 3, pp 385–397 | Cite as

Annual pollen spectrum in the air of Palma de Mallorca (Balearic Islands, Spain)

Original Paper

Abstract

This aeropalynological study documented the pollen of 13 taxa with the highest concentration in the air of Palma de Mallorca during the years 2004–2010, using a Hirst-type volumetric spore trap. The taxa were Cupressaceae, Olea europaea, Platanus hispanica, Pinus spp., Parietaria judaica, Urtica membranacea, Quercus ilex, Poaceae, Chenopodiaceae/Amaranthaceae, Plantago spp., Castanea sativa, Pistacia lentiscus and Betula spp. These taxa accounted for 91.85 % of the total annual pollen recorded during the period. The mean annual pollen index was 20,027. The highest pollen counts occurred in February–June, representing 88.74 % of the annual total collected. Every year, there was a substantial increase in the concentration and types of pollen from March to May, followed by a decrease from July to January. The maximum annual total pollen count was recorded in 2005 with 25,870 and the minimum in 2009 with 14,726. The mean daily average pollen concentration count showed a declining trend over the study period. With respect to seasonal phases analysed, the later phase of the pollen season is more variable than the beginning. To observe the overall dynamics of the different pollen types better, a pollen calendar was established for Palma de Mallorca. The pollen calendar had typical Mediterranean features and is a useful tool for allergological and botanical awareness.

Keywords

Aerobiology Palma de Mallorca Pollen calendar Allergenic pollen 

References

  1. Abreu, I., Ribeiro, H., & Cunha, M. (2003). An Aeropalynological study of the Porto region (Portugal). Aerobiologia, 19, 235–241.CrossRefGoogle Scholar
  2. Alba, F., Nieto-Lugilde, D., Comtois, P., de la Díaz Guardia, C., De Linares, C., & Ruiz Valenzuela, L. (2006). Airborne-pollen maps of Olea europaea L. in eastern Andalusia (Spain) using GIS: Estimations models. Aerobiologia, 2, 107–116.CrossRefGoogle Scholar
  3. Alcázar, P., García-Mozo, H., Trigo, M. M., González-Minero, F. J., Hidalgo, P., de la Díaz Guardia, C., et al. (2011). Platanus pollen season in Andalusia (southern Spain): Trends and modeling. Journal of Environmental Monitoring, 13, 2502–2510.CrossRefGoogle Scholar
  4. Andersen, T. B. (1991). A model to predict the beginning of the pollen season. Grana, 30, 269–275.CrossRefGoogle Scholar
  5. Aycan, B., Ayse, Y., Adem, B., Kayi, E., Yakup, C., Hulusi, M., et al. (2008). An observation study of airborne pollen fall in Didim (SW Turkey) years 2004–2005. Aerobiologia, 24, 61–66.CrossRefGoogle Scholar
  6. Ballero, M., & Maxia, A. (2003). Pollen spectrum variations in the atmosphere of Cagliari, Italy. Aerobiologia, 19, 251–259.CrossRefGoogle Scholar
  7. Belmonte, J., Roure, J. M., & Franch, J. (1995). Aerobiologia de Baleares, Ciutat de Mallorca, Maó y Ciutadella. REA, 1, 65–73.Google Scholar
  8. Boi, M., & Llorens, L. (2008). Aerobiology in Palma of Majorca (Balearic Island). Air pollen contain and journal variation during October 2003–December 2004. Polen, 18, 7–23.Google Scholar
  9. Cariñanos, P., Galan, C., Alcázar, P., & Domínguez, E. (2004). Airborne pollen records response to climatic conditions in arid areas of Iberian Peninsula. Environmental and Experimental Botany, 52, 11–22.CrossRefGoogle Scholar
  10. Castroviejo, S., Aedo, C., Cirujano, S., Laínz, M., Montserrat, P., Morales, R., et al. (Eds.). (1993). Flora iberica 2. CSIC: Real Jardín Botánico.Google Scholar
  11. Çeter, T., Pinar, N. M., Güney, K., Yildiz, A., Aşci, B., & Smith, M. (2012). A 2-year aeropalynological survey of allergenic pollen in the atmosphere of Kastamonu Turkey. Aerobiologia, 28(3), 355–366.CrossRefGoogle Scholar
  12. Cristofori, A., Cristofolini, F., & Gottardini, E. (2010). Twenty years of aerobiological monitoring in Trentino (Italy): Assessment and evaluation of airborne pollen variability. Aerobiologia, 26, 253–261.CrossRefGoogle Scholar
  13. D’Amato, G., Ruffilli, A., & Ortolani, C. (1991). Allergenic significance of Parietaria (Pellitory-of-the wall) pollen. In G. D’Amato, F Th M Spieksma, & S. Bonini (Eds.), Allergenic pollen and pollinosis in Europe. Oxford: Blackwell Scientific Publication.Google Scholar
  14. D’Amato, G., Cecchi, L., Bonini, S., Nunes, C., Annesi-Maesano, I., Behrendt, H., et al. (2007). Allergenic pollen and pollen allergy in Europe. Allergy, 62, 976–990.CrossRefGoogle Scholar
  15. Davies, R. R., & Smith, L. P. (2006). Weather and the grass pollen content of the air. Clinical and Experimental Allergy, 4, 95–108.CrossRefGoogle Scholar
  16. Docampo, S., Recio, M., Trigo, M. M., Melgar, M., & Cabezudo, B. (2007). Risk of pollen allergy in Nerja (southern Spain): A pollen calendar. Aerobiologia, 23, 189–199.CrossRefGoogle Scholar
  17. Domínguez-Vilches, E., Infante García-Pantaleón, F., Galán Soldevilla, C., Guerra Posadas, F., & de la Villamandos Torre, F. (1993). Variations in the concentrations of airborne Olea pollen and associated pollinosis in Córdoba (Spain): A study of 10-years period 1982–1991. Journal of Investigational Allergology and Clinical Immunology, 3, 121–129.Google Scholar
  18. Florido, J. F., Delgado, P. G., de San Pedro, B. S., Quiralte, J., de Saavedra, J. M., Peralta, V., et al. (1999). High levels of Olea europaea pollen in relation with clinical findings. International Archives of Allergy and Immunology, 119, 133–137.CrossRefGoogle Scholar
  19. Galán, C., Alcázar, P., Cariñanos, C., García, H., & Domínguez-Vilches, E. (2000). Meteorological factors affecting daily Urticaceae pollen counts in southwest Spain. International Journal of Biometeoroly, 43, 191–195.CrossRefGoogle Scholar
  20. Galán, C, Cariñanos, P., Alcázar, P., & Domínguez, E. (2007). Manual de calidad y gestión de la Red Española de Aerobiología. Universidad de Córdoba. pp. 61.Google Scholar
  21. García-Mozo, H., Galán, C., Belmonte, J., Bermejo, D., Candau, P., de la Díaz Guardia, C., et al. (2009). Predicting the start and peak dates of the Poaceae pollen season in Spain using process-based models. Agricultural and Forest Metereology, 149, 256–262.CrossRefGoogle Scholar
  22. Gioulekas, D., Balafoutis, C., Damialis, A., Papakosta, D., Gioulekas, D., & Patakas, D. (2004). Fifteen years records of airborne allergenic pollen and metrological parameters in Thessaloniki, Greece. International Journal of Biometeorology, 48, 128–136.CrossRefGoogle Scholar
  23. Hirst, J. M. (1952). An automatic volumetric spore-trap. Annals Applied Biology, 39, 257–265.CrossRefGoogle Scholar
  24. Hollander, M., & Wolfe, D. A. (1999). Nonparametric statistical methods (2nd ed.). New York: Wiley.Google Scholar
  25. Jato, V., Rodríguez-Rajo, F. J., Alcázar, P., De Nuntis, P., & Galán, C. (2006). May the definition of pollen season influence aerobiological results? Aerobiologia, 22, 13–15.CrossRefGoogle Scholar
  26. Madeja, J., Wypasek, E., Plytycz, B., Sarapata, K., & Harmata, K. (2005). Quantification of airborne birch (Betula sp.) pollen grains and allergens in Krakov. Archivum Immunologiae et therapiae Experimentalis, 53, 169–174.Google Scholar
  27. Makra, L., Sánta, T., Matyasovszky, I., Damialis, A., Karatzas, K., Bergmann, K. C., et al. (2010). Airborne pollen in three European cities: Detection of atmospheric circulation pathways by applying three dimensional clustering of backward trajectories. Journal of Geophysical Research, 115, D24220.CrossRefGoogle Scholar
  28. Marshall, J. B. (2004). European allergy white paper. Allergic diseases as a public health problem in Europe. The UCB Institute of Allergy. ISBN 2-87301-017-7.Google Scholar
  29. Mayer, C., Adler, L., Armbruster, S. W., Dafni, A., Eardley, C., Huang, S., et al. (2011). Pollination ecology in the 21st century: Key questions for future research. Journal of Pollination Ecology, 3(2), 8–23.Google Scholar
  30. Myszkowska, D., Jenner, B., Stȩpalska, D., & Czarnobilska, E. (2011). The pollen season dynamics and the relationship among some season parameters (start, end, annual total, season phases) in Kraków, Poland, 1991–2008. Aerobiologia, 27, 229–238.CrossRefGoogle Scholar
  31. Peeters, A. G., & Zooler, H. (1988). Long range transport of Castanea sativa pollen. Grana, 27, 203–207.CrossRefGoogle Scholar
  32. Peternel, R., Čulig, J., Mitić, B. M., Hrga, I., & Vukuśić, I. (2005). Airborne pollen spectra at three sites in inland Croatia (2003). Botanical Bulletin of Academia Sinica, 46, 53–59.Google Scholar
  33. Recio, M., Cabezudo, B., Trigo, M. M., & Toro, F. J. (1998). Pollen Calendar of Malaga (Southern Spain), 1991–1995. Aerobiologia, 14, 101–107.CrossRefGoogle Scholar
  34. Rivas-Martínez, S. (1987). Memoria del mapa de series de vegetación de España. Madrid: I.C.O.N.A.Google Scholar
  35. Rodríguez, F. J., Iglesias, I., & Jato, V. (2004). Allergenic airborne pollen monitoring of Vigo (NW Spain) in 1995–2001. Grana, 43, 164–173.CrossRefGoogle Scholar
  36. Root, T. L., Price, J. T., Hall, K. R., Schneider, S. H., Rosenzweig, C., & Pounds, J. A. (2003). Fingerprints of global warming on wild animals and plants. Nature, 421, 57–60.CrossRefGoogle Scholar
  37. Sen, P. K. (1968). Estimates of the regression coefficient base on Kendall’s tau. Journal of the American Statistical Association, 63, 1379–1389.CrossRefGoogle Scholar
  38. Skjøth, C. A., Sommer, J., Stach, A., Smith, M., & Brandt, J. (2007). The long-range transport of birch (Betula) pollen from Poland and Germany causes significant pre-season concentrations in Denmark. Clinical and Experimental Allergy, 37, 1204–1212.CrossRefGoogle Scholar
  39. Spieksma, F. Th. M. (1991). Regional European pollen calendars. In G. D’amato, F. Th. M. Spiesma, & S. Bonini (Eds.), Allergenic pollen and pollinosis in Europe. Oxford: Blackwell.Google Scholar
  40. Stix, E., & Ferretti, M. L. (1974). Pollen calendars of three locations in Western Germany. In J. Charpin, R. Surinyach, & A. W. Frankland (Eds.), Atlas European des Pollens Allergisants. Sandoz: París.Google Scholar
  41. Szczepanek, K. (1994). Pollen calendar for Krakóv (southern Poland), 1982–1991. Aerobiologia, 10, 65–70.CrossRefGoogle Scholar
  42. Vázquez, L. M., Galán, C., & Domínguez Vilchés, E. (2003). Influence of meteorological parameters on Olea pollen concentrations in Córdoba (South-western Spain). International Journal of Biometeorology, 48, 83–90.CrossRefGoogle Scholar
  43. Ziska, L. H., Epstein, P. R., & Rogers, C. A. (2008). Climate change, aerobiology, and public health in the Northeast United States. Mitigation and Adaptation Strategies for Global Change, 13, 607–613.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Dep.to Biologia-BotànicaUniversitat de les Illes BalearsPalma de MallorcaSpain

Personalised recommendations