, Volume 29, Issue 3, pp 341–354 | Cite as

NaCl-amendment assay targeting airborne bacteria in tropospheric bioaerosols transported by westerly wind over Noto Peninsula

  • Teruya MakiEmail author
  • Fumihisa Kobayashi
  • Maromu Yamada
  • Hiroshi Hasegawa
  • Yasunobu Iwasaka
Original Paper


Bioaerosol particles including bacteria, fungi, and virus are originated from marine and terrestrial environments. The airborne microorganisms are transported for long distance through the free troposphere and are thought to influence the downwind ecosystems and human life. However, microbial communities in the free troposphere have not been understood in detail because the direct sampling of microbial cells at high altitude requires sophisticated sampling techniques. In this study, for the investigation of microbial species compositions in the free troposphere, air sampling using an aircraft was performed over the Noto Peninsula in Japan, where the tropospheric winds carry aerosol particles from continental areas. Two air samples were collected at 3,000 m on March 27, 2010, when air mass was carried from the Gobi Desert to Japan area. Microorganisms from one air sample grew in culture media containing up to 15 % NaCl, suggesting that halotolerant bacteria maintain their viabilities in the free troposphere. DGGE analysis revealed that the amended cultures were dominated by Bacillus subtilis, and the isolates obtained from the amended cultures were identical to B. subtilis. Furthermore, the 16S rDNA clone library (culture-independent survey) of the other air sample grew was composed of three phylotypes belonging to Firmicutes, Bacteroidetes, and Proteobacteria with the sequences of Firmicutes phylotype corresponding to that of the cultured B. subtilis sequence. Microscopic observation using FISH method indicated that B. subtilis particles occupied 80 % of total eubacterial particles on the mineral particles. The halotolerant bacteria identical to B. subtilis would dominate at high altitudes over Noto Peninsula where the prevailing westerly wind was blowing.


Kosa Asian dust Bioaerosol Halotolerant bacteria Free troposphere Atmosphere 



This research was supported by a Grant-in-Aid for the Encouragement of Young Scientists (22681005) from the Ministry of Education, Science, Sports, and Culture, Japan. The Global Environment Research Fund (B-0901,C-1155) of the Ministry of the Environment, Japan also supported this work, as did the Mitsui & Co., Ltd. Environment Fund.

Supplementary material

10453_2012_9284_MOESM1_ESM.ppt (1.1 mb)
Supplementary material 1 (PPT 1175 kb)


  1. Alabouvette, C., Hoeper, H., Lemanceau, P., & Steinberg, C. (1996). Soil suppressiveness to diseases induced by soil-borne plant pathogens. Soil Biochemistry, 9, 371–413.Google Scholar
  2. Alan, M. J., & Harrison, R. M. (2004). The effects of meteorological factors on atmospheric bioaerosol concentrations—a review. Science of Total Environment, 326, 151–180.CrossRefGoogle Scholar
  3. Amann, R. I., Binder, B. J., Olson, R. J., Chisholm, S. W., Deverelux, R., & Stahl, D. A. (1990). Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Applied and Environmental Microbiology, 56, 1919–1925.Google Scholar
  4. Ashiuchi, M., Tani, K., Soda, K., & Misono, H. (1998). Properties of glutamate racemase from Bacillus subtilis IFO 3336 producing poly-gamma-glutamate. Journal of Biochemistry, 123, 1156–1163.CrossRefGoogle Scholar
  5. Banerjee, S., Devaraja, T. N., Shariff, M., & Yusoff, F. M. (2007). Comparison of four antibiotics with indigenous marine Bacillus spp. in controlling pathogenic bacteria from shrimp and Artemia. Journal of Fish Diseases, 30, 383–389.CrossRefGoogle Scholar
  6. Brinkmeyer, R., Knittel, K., Jügens, J., Weyland, H., Amann, R., & Helmke, E. (2003). Diversity and structure of bacterial communities in Arctic versus Antarctic pack ice. Applied and Environmental Microbiology, 69, 6610–6619.CrossRefGoogle Scholar
  7. Das, K., & Mukherjee, A. K. (2007). Crude petroleum-oil biodegradation efficiency of Bacillus subtilis and Pseudomonas aeruginosa strains isolated from a petroleum-oil contaminated soil from North-East India. Bioresource Technology, 98, 1339–1345.CrossRefGoogle Scholar
  8. Griffin, D. W., Kellogg, C. A., Garrison, V. H., Lisle, J. T., Borden, T. C., & Shinn, E. A. (2003). Atmospheric microbiology in the northern Caribbean during African dust. Aerobiologia, 19, 143–157.CrossRefGoogle Scholar
  9. Hara, K., & Zhang, D. (2012). Bacterial abundance and viability in long-range transported dust. Atmospheric Environment, 47, 20–25.CrossRefGoogle Scholar
  10. Haruta, S., Kondo, M., Nakamura, K., Aiba, H., Ueno, S., Ishii, M., et al. (2002). Microbial community changes during organic solid waste treatment analyzed by double gradient-denaturing gradient gel electrophoresis and fluorescence in situ hybridization. Applied Microbiology and Biotechnology, 60, 224–231.CrossRefGoogle Scholar
  11. Hua, N. P., Kobayashi, F., Iwasaka, Y., Shi, G. Y., & Naganuma, T. (2007). Detailed identification of desert-originated bacteria carried by Asian dust storms to Japan. Aerobiologia, 23, 291–298.CrossRefGoogle Scholar
  12. Ichinose, T., Nishikawa, M., Takano, H., Sera, N., Sadakane, K., Mori, I., et al. (2005). Pulmonary toxicity induced by intratracheal instillation of Asian yellow dust (Kosa) in mice. Environmental Regulatory Toxicology and Pharmacology, 20, 48–56.CrossRefGoogle Scholar
  13. Iwasaka, Y., Shi, G. Y., Yamada, M., Kobayashi, F., Kakikawa, M., Maki, T., et al. (2009). Mixture of Kosa (Asian dust) and bioaerosols detected in the atmosphere over the Kosa particles source regions with balloon-borne measurements: possibility of long-range transport. Air Quality, Atmosphere and Health, 2, 29–38.CrossRefGoogle Scholar
  14. Iwasaka, Y., Yamato, M., Imasu, R., & Ono, A. (1988). The transport of Asia dust (KOSA) particles; importance of weak KOSA events on the geochemical cycle of soil particles. Tellus, 40B, 494–503.CrossRefGoogle Scholar
  15. Jaenicke, R. (2005). Abundance of cellular material and proteins in the atmosphere. Science, 308, 73.CrossRefGoogle Scholar
  16. Jeon, E. M., Kim, H. J., Jung, K., Kim, J. H., Kim, M. Y., Kim, Y. P., et al. (2011). Impact of Asian dust events on airborne bacterial community assessed by molecular analyses. Atmospheric Environment, 45, 4313–4321.CrossRefGoogle Scholar
  17. Jones, A. M., & Harrison, R. M. (2004). The effects of meteorological factors on atmospheric bioaerosol concentrations—a review. Science of Total Environment, 326, 151–180.CrossRefGoogle Scholar
  18. Kobayashi, F., Kakikawa, M., Yamanda, M., Chen, B., Shi, G. Y., & Iwasaka, Y. (2007). Study on atmospheric diffusion of bioaerosols in a KOSA source region. Earozoru Kenkyu, 22, 218–227. (in Japanese).Google Scholar
  19. Kobayashi, F., Morosawa, S., Maki, T., Kakikawa, M., Yamada, M., Tobo, Y., et al. (2011). Atmospheric bioaerosol, Bacillus sp., at an altitude of 3,500 m over the Noto Peninsula: Direct sampling via aircraft. Asian Journal of Atmospheric Environment, 5, 164–171.CrossRefGoogle Scholar
  20. Lew, S., Lew, M., Mieszczyński, T., & Szarek, J. (2010). Selected fluorescent techniques for identification of the physiological state of individual water and soil bacterial cells—review. Folia Microbiologica, 55, 107–118.CrossRefGoogle Scholar
  21. Li, K., Dong, S., Wu, Y., & Yao, M. (2010). Comparison of the biological content of air samples collected at ground level and at higher elevation. Aerobiologia, 26, 233–244.CrossRefGoogle Scholar
  22. Maidak, B. L., Olsen, G. J., Larsen, N., Overbeek, R., McCaughey, M. J., & Woese, C. (1997). The RDP (ribosomal database project). Nucleic Acids Research, 25, 109–110.CrossRefGoogle Scholar
  23. Maki, T., Aoki, S., Susuki, S., Kobayashi, F., Kakikawa, M., Hasegawa, H., et al. (2011). Characterization of halotolerant and oligotrophic bacterial communities in Asian desert dust (KOSA) bioaerosol accumulated in layers of snow on Mount Tateyama, Central Japan. Aerobiologia, 27, 277–290.CrossRefGoogle Scholar
  24. Maki, T., Susuki, S., Kobayashi, F., Kakikawa, M., Tobo, Y., Yamada, M., et al. (2010). Phylogenetic analysis of atmospheric halotolerant bacterial communities at high altitude in an Asian dust (KOSA) arrival region, Suzu City. Science of Total Environment, 408, 4556–4562.CrossRefGoogle Scholar
  25. Maki, T., Susuki, S., Kobayashi, F., Kakikawa, M., Yamada, M., Higashi, T., et al. (2008). Phylogenetic diversity and vertical distribution of a halobacterial community in the atmosphere of an Asian dust (KOSA) source region, Dunhuang City. Air Quality, Atmosphere and Health, 1, 81–89.CrossRefGoogle Scholar
  26. Maki, T., Yoshinaga, I., Katanozaka, N., & Imai, I. (2004). Phylogenetic analysis of intracellular bacteria of a harmful marine microalga Heterocapsa circularisquama (Dinophyceae). Aquatic Microbial Ecology, 36, 123–135.CrossRefGoogle Scholar
  27. Maron, P. A., Lejon, D. P. H., Carvalho, E., Bizet, K., Lemanceau, P., Ranjard, L., et al. (2005). Assessing genetic structure and diversity of airborne bacterial communities by DNA fingerprinting and 16S rDNA clone library. Atmospheric Environment, 39, 3687–3695.CrossRefGoogle Scholar
  28. Matsuki, A., Iwasaka, Y., Osada, K., Matsunaga, K., Kido, M., Inomata, Y., et al. (2003). Seasonal dependence of the long-range transport and vertical distribution of tropospheric aerosols over east Asia: On the basis of aircraft and lidar measurements and isentropic trajectory analysis. Journal of Geophysical Research, 108(D23), 8663.Google Scholar
  29. Mostajir, B., Dolan, J. R., & Rassoulzadegan, F. (1995). A simple method for the quantification of a class of labile marine pico-and nano-sized detritus: DAPI yellow particles (DYP). Aquatic Microbial Ecology, 9, 259–266.CrossRefGoogle Scholar
  30. Muyzer, G., de Waal, E. C., & Uitterlinden, A. G. (1993). Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Applied Microbiology and Biotechnology, 59, 695–700.Google Scholar
  31. Nicholson, W. L., Munakata, N., Horneck, G., Melosh, H. J., & Setlow, P. (2000). Resistance of Bacillus endospores to extreme terrestrial and extraterrestrial environments. Microbiology and Molecular Biology Reviews, 64, 548–572.CrossRefGoogle Scholar
  32. Olsen, R. A., & Bakken, L. B. (1987). Viability of soil bacteria; optimization of plate-counting technique and comparison between total counts and plate counts within different size groups. Microbial Ecology, 13, 59–74.CrossRefGoogle Scholar
  33. Pratt, K. A., DeMott, P. J., French, J. R., Wang, Z., Westphal, D. L., Heymsfield, A. J., et al. (2009). In situ detection of biological particles in cloud ice-crystals. Nature Geoscience, 2, 398–401.CrossRefGoogle Scholar
  34. Prospero, J. M., Blades, E., Mathison, G., & Naidu, R. (2005). Interhemispheric transport of viable fungi and bacteria from Africa to the Caribbean with soil dust. Aerobiologia, 21, 1–19.CrossRefGoogle Scholar
  35. Richard, V., Van derAuwera, P., Snoeck, R., Daneau, D., & Meunier, F. (1988). Nosocomial bacteremia caused by Bacillus species. European Journal of Clinical Microbiology and Infectious Diseases, 7, 783–785.CrossRefGoogle Scholar
  36. Russell, N. J. (1989). Adaptive modifications in membranes of halotolerant and halophilic microorganisms. Journal of Bioenergetics and Biomembranes, 21, 93–113.CrossRefGoogle Scholar
  37. Russell, W. C., Newman, C., & Williamson, D. H. (1974). A simple cytochemical technique for demonstration of DNA in cells infected with mycoplasma and viruses. Nature, 253, 461–462.CrossRefGoogle Scholar
  38. Saitou, N., & Nei, M. (1987). The neighbor-joining method: A new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4, 406–425.Google Scholar
  39. Velasco, E., Martins, C. A., Tabak, D., & Bouzas, L. F. (1992). “Bacillus subtilis” infection in a patient submitted to a bone marrow transplantation. Revista Paulista de Medicina, 110, 116–117.Google Scholar
  40. Yukimura, K., Nakai, R., Kohshima, S., Uetake, J., Kanda, H., & Naganuma, T. (2009). Spore-forming halophilic bacteria isolated from Arctic terrains: Implications for long-range transportation of microorganisms. Polar Scince, 3, 163–169.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Teruya Maki
    • 1
    Email author
  • Fumihisa Kobayashi
    • 1
  • Maromu Yamada
    • 2
  • Hiroshi Hasegawa
    • 1
  • Yasunobu Iwasaka
    • 3
  1. 1.College of Science and EngineeringKanazawa UniversityKakuma, KanazawaJapan
  2. 2.National Institute of Occupational Safety and HealthTama-kuJapan
  3. 3.Community Research Service GroupUniversity of Shiga PrefectureHikoneshiJapan

Personalised recommendations