Aerobiologia

, Volume 29, Issue 3, pp 321–331 | Cite as

Do indoor plants contribute to the aeromycota in city buildings?

  • Fraser R. Torpy
  • Peter J. Irga
  • Jason Brennan
  • Margaret D. Burchett
Original Paper

Abstract

Many studies have focused on the sources of fungal contamination in indoor spaces. Pathogenic fungi have been detected in the potting mix of indoor plants; however, it is unclear if plants in indoor work spaces make qualitative or quantitative contributions to the aeromycota within buildings. The current work represents a field study to determine, under realistic office conditions, whether indoor plants make a contribution to the airborne aeromycota. Fifty-five offices, within two buildings in Sydney’s central business district, were studied over two seasonal periods: autumn and spring. We found that indoor plant presence made no significant difference to either indoor mould spore counts or their species composition. No seasonal differences occurred between autumn and spring samples. Indoor spore loads were significantly lower than outdoor levels, demonstrating the efficiency of the heating, ventilation and air conditioning systems in the buildings sampled. Neither the number of plants nor the species of plant used had an influence on spore loads; however, variations of those two variables offer potential for further studies. We conclude that conservative numbers of indoor plants make no substantial contribution to building occupants exposure to fungi.

Keywords

Indoor air quality Aeromycota Indoor plants Airborne fungi Office buildings 

References

  1. Adan, O. C. G., & Samson, R. A. (2011). Fundamentals of mold growth in indoor environments and strategies for healthy living. Wageningen, The Netherlands: Wageningen Academic Publishers.CrossRefGoogle Scholar
  2. Alexopoulos, C. J., Mims, C. W., & Blackwell, M. (1996). Introductory mycology. New York: Wiley.Google Scholar
  3. American Conference of Governmental Industrial Hygienists (ACGIH) (1989). Fungi. Committee on Bioaerosols. Cincinnati, OH: American Conference of Governmental Industrial Hygienists.Google Scholar
  4. American Conference of Governmental Industrial Hygienists (ACGIH) (1999). TLVs and BEIs. Threshold limit values for chemical substances and physical agents, biological exposure indices. Cincinnati, OH: American Conference of Governmental Industrial Hygienists.Google Scholar
  5. Anaissie, E. J., Stratton, S. J., Dignani, M. C., Summerbell, R. C., Rex, J. H., & Monson, T. P. (2002). Pathogenic Aspergillus species recovered from a hospital water system: A 3-year prospective study. Clinical Infectious Disease, 34, 780–789.CrossRefGoogle Scholar
  6. ASHRAE (1992). Thermal environmental conditions for human occupancy. (Vol. 5). Atlanta: American Society of Heating, Refrigerating and Air-Conditioning Engineers Inc.Google Scholar
  7. Burge, H. A., Pierson, D. L., Groves, T. O., Strawn, K. F., & Mishra, S. K. (2000). Dynamics of airborne fungal populations in a large office building. Current Microbiology, 40(1), 10–16.CrossRefGoogle Scholar
  8. Burge, H. A., Solomon, W. R., & Muilenberg, M. S. (1982). Evaluation of indoor plantings as allergen exposure sources. Journal of Allergy and Clinical Immunology, 70(2), 101–108.CrossRefGoogle Scholar
  9. Chih-Shan, L., & Hsu, C.-W. (1997). Indoor pollution and sick building syndrome symptoms among workers in day care centres. Archives of Environmental Health, 52(3), 200.CrossRefGoogle Scholar
  10. Costa, P. R., & James, R. W. (1999). Air conditioning and noise control using vegetation. In: Proceedings of the 8th International Conference on Indoor Air Quality and Climate, pp. 234–239.Google Scholar
  11. Dharmage, S., Bailey, M., Raven, J., Mitakakis, T., Thien, F., Forbes, A., et al. (1999). Prevalence and residential determinants of fungi within homes in Melbourne, Australia. Clinical & Experimental Allergy, 29(11), 1481–1489.CrossRefGoogle Scholar
  12. El-Ani, A. S. (1975). Variation in vivo and isolation of Aspergillus fumigatus from a case of human aspergillosis. Mycologia, 67, 114–1118.CrossRefGoogle Scholar
  13. Ellis, D., Davis, S., Alexiou, H., Handke, R., & Bartley, R. (2007). Descriptions of medical fungi (2nd ed.). Adelaide: Published by the Authors.Google Scholar
  14. Engelhart, S., Rietschel, E., Exner, M., & Lange, L. (2009). Childhood hypersensitivity pneumonitis associated with fungal contamination of indoor hydroponics. International Journal of Hygiene and Environmental Health, 212(1), 18–20.CrossRefGoogle Scholar
  15. Flannigan, B. (1997). Air sampling for fungi in indoor environments. Journal of Aerosol Science, 28(3), 381–392.CrossRefGoogle Scholar
  16. Gonçalves, F., Bauer, H., Cardoso, M., Pukinskas, S., Matos, D., Melhem, M., et al. (2010). Indoor and outdoor atmospheric fungal spores in the São Paulo metropolitan area (Brazil): species and numeric concentrations. International Journal of Biometeorology, 54(4), 347–355.CrossRefGoogle Scholar
  17. Gots, R. E., Layton, N. J., & Pirages, S. W. (2003). Indoor health: Background levels of fungi. AIHA Journal, 64(4), 427–438.CrossRefGoogle Scholar
  18. Green, C. F., Scarpino, P. V., & Gibbs, S. G. (2003). Assessment and modeling of indoor fungal and bacterial bioaerosol concentrations. Aerobiologia, 19, 159–169.CrossRefGoogle Scholar
  19. Grinn-Gofroń, A., & Rapiejko, P. (2009). Occurrence of Cladosporium spp. and Alternaria spp. spores in Western, Northern and Central–Eastern Poland in 2004–2006 and relation to some meteorological factors. Atmospheric Research, 93(4), 747–758.CrossRefGoogle Scholar
  20. Hargreaves, M., Parappukkaran, S., Morawska, L., Hitchins, J., He, C., & Gilbert, D. (2003). A pilot investigation into associations between indoor airborne fungal and non-biological particle concentrations in residential houses in Brisbane. Australia. Science of the Total Environment, 312(1–3), 89–101.CrossRefGoogle Scholar
  21. Hedayati, M. T., Mohseni-Bandpi, A., & Moradi, S. (2004). A survey on the pathogenic fungi in soil samples of potted plants from Sari hospitals, Iran. Journal of Hospital Infection, 58(1), 59–62.CrossRefGoogle Scholar
  22. Hess-Kosa, K. (2011). Indoor air quality: Sampling methodologies (2nd ed.). Boca Raton, FL, USA: Lewis Publishers, CRC Press.CrossRefGoogle Scholar
  23. Horner, W. E., Barnes, C., Codina, R., & Levetin, E. (2008). Guide for interpreting reports from inspections/investigations of indoor mold. Journal of Allergy and Clinical Immunology, 121(3), 592–597.CrossRefGoogle Scholar
  24. Hunter, C. A., Grant, C., Flannigan, B., & Bravery, A. F. (1988). Mould in buildings: the air spora of domestic dwellings. International Biodeterioration, 24(2), 81–101.CrossRefGoogle Scholar
  25. Jantunen, M. J., Nevalainen, A., Rytkonen, A. L., Pellikka, M., & Kalliokoski, P. (1987). The effect of humidification on indoor fungal spore counts in apartment buildings. In Proceedings of the 4th International Conference on Indoor Air Quality and Climate, Berlin. pp. 643–647.Google Scholar
  26. Kenyon, E. M., Russell, L. H., & McMurray, D. N. (1984). Isolation of pathogenic Aspergillus species from commercially prepared potting media. Mycopathologia, 87(2), 171–173.CrossRefGoogle Scholar
  27. Klich, M. A., & Pitt, J. I. (1988). A laboratory guide to common aspergillus species and their teleomorphs: Sydney. Australia: CSIRO.Google Scholar
  28. Lass-Flörl, C., Rath, P. M., Niederwieser, D., Kofler, G., Würzner, R., Krezy, A., et al. (2000). Aspergillus terreus infections in haematological malignancies: molecular epidemiology suggests association with in-hospital plants. Journal of Hospital Infection, 46(1), 31–35.CrossRefGoogle Scholar
  29. Lehtonen, M., Reponen, T., & Nevalainen, A. (1993). Everyday activities and variation of fungal spore concentrations in indoor air. International Biodeterioration and Biodegradation, 31(1), 25–39.CrossRefGoogle Scholar
  30. Levetin, E. (2004). Methods for aeroallergen sampling. Current Allergy and Asthma Reports, 4(5), 376–383.CrossRefGoogle Scholar
  31. Li, D.-W., & Kendrick, B. (1995). A year-round comparison of fungal spores in indoor and outdoor air. Mycologia, 87(2), 190–195.CrossRefGoogle Scholar
  32. Madelin, T. M. (1994). Fungal aerosols: A review. Journal of Aerosol Science, 25(8), 1405–1412.CrossRefGoogle Scholar
  33. Maschmeyer, G., Haas, A., & Cornely, O. A. (2007). Invasive aspergillosis: epidemiology, diagnosis and management in immunocompromised patients. Drugs, 67(11), 1567–1601.CrossRefGoogle Scholar
  34. Mendell, M. J., Mirer, A. G., Cheung, K., Tong, M., & Douwes, J. (2011). Respiratory and allergic health effects of dampness, mold, and dampness. Related agents: A review of the epidemiologic evidence. Environmental Health Perspectives, 119(6), 748–756.CrossRefGoogle Scholar
  35. Mentese, S., Arisoy, M., Rad, A. Y., & Güllü, G. (2009). Bacteria and Fungi Levels in Various Indoor and Outdoor Environments in Ankara, Turkey. CLEAN—Soil, Air, Water, 37(6), 487–493.CrossRefGoogle Scholar
  36. Meyer, H. W., Wurtz, H., Suadicani, P., Valbjorn, O., Sigsgaard, T., & Gyntelberg, F. (2004). Molds in floor dust and building-related symptoms in adolescent school children. Indoor Air, 14(1), 65–72.CrossRefGoogle Scholar
  37. Miller, J. D., & Young, J. C. (1997). The use of ergosterol to measure exposure to fungal propagules in indoor air. American Industrial Hygiene Association Journal, 58, 39–43.CrossRefGoogle Scholar
  38. Mycology Online (2008–2012). Identification of Medically Important Fungi. http://www.mycology.adelaide.edu.au/ Accessed 28 April 2008–2013 June 2010.
  39. O’Gorman, C. M. (2011). Airborne Aspergillus fumigatus conidia: a risk factor for aspergillosis. Fungal biology reviews, 25(3), 151–157.CrossRefGoogle Scholar
  40. O’Gorman, C. M., & Fuller, H. T. (2008). Prevalence of culturable airborne spores of selected allergenic and pathogenic fungi in outdoor air. Atmospheric Environment, 42(18), 4355–4368.CrossRefGoogle Scholar
  41. Parat, S., Perdrix, A., Fricker-Hidalgo, H., Saude, I., Grillot, R., & Baconnier, P. (1997). Multivariate analysis comparing microbial air content of an air-conditioned building and a naturally ventilated building over one year. Atmospheric Environment, 31(3), 441–449.CrossRefGoogle Scholar
  42. Pasanen, A. L., Pasanen, P., Jantunen, M. J., & Kalliokoski, P. (1991). Significance of air humidity and air velocity for fungal spore release into the air. Atmospheric Environment. Part A. General Topics, 25(2), 459–462.CrossRefGoogle Scholar
  43. Reponen, T., Lehtonen, M., Raunemaa, T., & Nevalainen, A. (1992). Effect of indoor sources on fungal spore concentrations and size distributions. Journal of Aerosol Science, 23, Supplement 1(0), 663–666.Google Scholar
  44. Saldanha, R., Manno, M., Saleh, M., Ewaze, J. O., & Scott, J. A. (2008). The influence of sampling duration on recovery of culturable fungi using the Andersen N6 and RCS bioaerosol samplers. Indoor Air, 18(6), 464–472.CrossRefGoogle Scholar
  45. Singh, J., Yu, C. W. F., & Kim, J. T. (2010). Building pathology, investigation of sick buildings—toxic moulds. Indoor and Built Environment, 19(1), 40–47.CrossRefGoogle Scholar
  46. Smith, C. M., & Kagan, S. H. (2005). Prevention of systemic mycoses by reducing exposure to fungal pathogens in hospitalized and ambulatory neutropenic patients. Oncology Nursing Forum, 32(3), 565–579.CrossRefGoogle Scholar
  47. Staib, F., Tompak, B., Thiel, D., & Blisse, A. (1978). Aspergillus fumigatus and Aspergillus niger in two potted ornamental plants, cactus (Epiphyllum truncatum) and clivia (Clivia miniata). Biological and epidemiological aspects. Mycopathologia, 66(1), 27–30.CrossRefGoogle Scholar
  48. Summerbell, R. C., Krajden, S., & Kane, J. (1989). Potted plants in hospitals as reservoirs of pathogenic fungi. Mycopathologia, 106, 13–22.CrossRefGoogle Scholar
  49. Takahashi, T. (1997). Airborne fungal colony-forming units in outdoor and indoor environments in Yokohama, Japan. Mycopathologia, 139, 23–33.CrossRefGoogle Scholar
  50. Takeda, M., Saijo, Y., Yuasa, M., Kanazawa, A., Araki, A., & Kishi, R. (2009). Relationship between sick building syndrome and indoor environmental factors in newly built Japanese dwellings. International Archives of Occupational and Environmental Health, 82(5), 583–593.CrossRefGoogle Scholar
  51. Zhen, S., Li, K., Yin, L., Yao, M., Zhang, H., Chen, L., et al. (2009). A comparison of the efficiencies of a portable BioStage impactor and a Reuter centrifugal sampler (RCS) High Flow for measuring airborne bacteria and fungi concentrations. Journal of Aerosol Science, 40(6), 503–513.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Fraser R. Torpy
    • 1
  • Peter J. Irga
    • 1
  • Jason Brennan
    • 2
  • Margaret D. Burchett
    • 1
  1. 1.Plants and Indoor Environmental Quality Group, School of the EnvironmentUniversity of Technology, SydneySydneyAustralia
  2. 2.Sydney Environmental and Soil Laboratory AustraliaThornleighAustralia

Personalised recommendations