, Volume 29, Issue 2, pp 315–319 | Cite as

Detection and source identification of airborne extended-spectrum beta-lactamase-producing Escherichia coli isolates in a chicken house

  • Song Li
  • Miaoqing Zhao
  • Yanling Li
  • Ling Zhang
  • Xianzhong Zhang
  • Zengmin MiaoEmail author
Brief Communication


To identify airborne dissemination of extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli (E. coli) in a chicken house, airborne E. coli was collected from indoor air of a chicken house using six-stage Anderson sampler, and E. coli from chicken fecal samples were also isolated simultaneously. ESBL-producing E. coli isolates from indoor air and fecal samples were screened by a phenotypic confirmatory test according to CLSI recommendations. And then, the enterobacterial repetitive intergenic consensus polymerase chain reaction was performed to analyze the source of airborne ESBL-producing E. coli. The results showed that the ESBL-positive rates of E. coli isolates from feces and the indoor air were 56 % (18/32) and 40 % (6/15), respectively. Furthermore, airborne ESBL-producing E. coli isolates in the chicken house had 100 % genetic similarities with the strains from chicken feces, indicating that ESBL-producing E. coli from chicken feces could be aerosolized and spread to the air.


Extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli (E. coliChicken house Enterobacterial repetitive intergenic consensus (ERIC) Genetic similarity 


  1. Aarestrup, F. M., Hasman, H., Agerso, Y., et al. (2006). First description of blaCTX-M-1-carrying Escherichia coli isolates in Danish primary food production. Journal of Antimicrobial Chemotherapy, 57, 1258–1259.CrossRefGoogle Scholar
  2. Amy, C., Ana, R., Kristen, G., et al. (2005). Airborne multidrug-resistant bacteria isolated from a concentrated swine feeding operation. Environmental Health Perspectives, 113, 137–142.Google Scholar
  3. Andersen, A. (1958). New sampler for the collection, sizing, and enumeration of viable airborne particles. Journal of Bacteriology, 76, 471–484.Google Scholar
  4. Borges, L. G., Vechia, V. D., & Corça, G. (2003). Characterization and genetic diversity via REP-PCR of Staphylococcus aureus isolates from polluted waters in southern Brazil. FEMS Microbiology Ecology, 43, 173–180.CrossRefGoogle Scholar
  5. Cantón, R., Novais, A., Valverde, A., et al. (2008). Prevalence and spread of extended-spectrum beta-lactamase-producing Enterobacteriaceae in Europe. Clinical Microbiology & Infection, 14, 144–153.CrossRefGoogle Scholar
  6. Cheng, D. R., Sun, H. C., Xu, J. S., et al. (2006). PCR detection of virulence factor genes in Escherichia coli isolates from weaned piglets with edema disease and/or diarrhea in China. Veterinary Microbiology, 115, 320–328.CrossRefGoogle Scholar
  7. Daniela, C., Laura, V., Patricia, P., et al. (2009). Prevalence of extended-spectrum beta-lactamase-producing Escherichia coli isolates in faecal samples of broilers. Veterinary Microbiology, 138, 339–344.CrossRefGoogle Scholar
  8. Duan, R. S., Sit, T. H., Wong, S. S., et al. (2006). Escherichia coli producing CTXM beta-lactamases in food animals in Hong Kong. Microbial Drug Resistance, 12, 145–148.CrossRefGoogle Scholar
  9. Franz, F. R., Gebhard, F., Herbert, G., et al. (2010). ESBL-producing E. coli in Austrian sewage sludge. Water Research, 44, 1981–1985.CrossRefGoogle Scholar
  10. Girlich, D., Poirel, L., Carattoli, A., et al. (2007). Extended-spectrum-betalactamse CTX-M-1 in Escherichia coli in healthy poultry in France. Applied and Environment Microbiology, 73, 4681–4685.CrossRefGoogle Scholar
  11. Hu, G. Z., Zhang, C. H., Yuan, L., et al. (2005). Detection of beta-lactamase and extended-spectrum beta-lactamase of pathogens isolated from pig and chicken and their antibiotic susceptibility test. Agricultural Sciences in China, 4, 877–882.Google Scholar
  12. Hulton, C. S., Higgins, C. F., & Sharp, P. M. (1991). ERIC sequences: a novel family of repetitive elements in the genomes of Escherichia coli, Salmonella typhimuirum and other Enterobacteria. Molecular Microbiology, 5, 825–834.CrossRefGoogle Scholar
  13. Kim, T. E., Jeong, Y. W., Cho, S. H., et al. (2007). Chronological study of antibiotic resistances and their relevant genes in Korean avian pathogenic Escherichia coli isolates. Journal of Clinical Microbiology, 45, 3309–3315.CrossRefGoogle Scholar
  14. Kojima, A., Ishii, Y., Ishihara, K., Esaki, H., et al. (2005). Extended-spectrum-b-lactamaseproducing Escherichia coli strains isolated from farm animals from 1999 to 2002: report from the Japanese veterinary antimicrobial resistance monitoring program. Antimicrobial Agents and Chemotherapy, 49, 3533–3537.CrossRefGoogle Scholar
  15. Leverstein-van, H. M., Dierikx, C. M., Cohen, S. J., et al. (2011). National ESBL surveillance group Dutch patients, retail chicken meat and poultry share the same ESBL genes, plasmids and strains. Clinical Microbiology & Infection, 17, 873–880.CrossRefGoogle Scholar
  16. Lipman, L. J. A., de Nijs, A., Lam, T. J. G. M., et al. (1995). Identification of Escherichia coli strains from cows with clinical mastitis by serotyping and DNA polymorphism patterns with REP and ERIC primers. Veterinary Microbiology, 43, 13–19.CrossRefGoogle Scholar
  17. Liu, J. H., Wei, S. Y., Ma, J. Y., et al. (2007). Detection and characterisation of CTX-M and CMY-2 beta-lactamases among Escherichia coli isolates from farm animals in Guangdong Province of China. International Journal of Antimicrobial Agents, 29, 576–581.CrossRefGoogle Scholar
  18. Macher, J. M. (1989). Positive-hole correction of multiple-jet impactors for collecting viable microorganisms. American Industrial Hygiene Association Journal, 50, 561–568.CrossRefGoogle Scholar
  19. McCartney, A. L., Wenzhi, W., & Tanock, G. W. (1996). Molecular analysis of the composition of the bifidobacterial and lactobacillus microflora of humans. Applied and Environment Microbiology, 62, 4608–4613.Google Scholar
  20. Prado, T., Pereira, W. C., Silva, D. M., et al. (2008). Detection of extended-spectrum beta-lactamase-producing Klebsiella pneumoniae in effluents and sludge of a hospital sewage treatment plant. Letters in Applied Microbiology, 46, 136–141.Google Scholar
  21. Rohlf, F. J. (2006). NTSYS-pc: Numerical taxonomy and multi-variate analysis system [M], version 2.10, exeter software, 2000. New York: Setauket.Google Scholar
  22. Skurnik, D., Ruimy, R., Andremont, A., et al. (2006). Effect of human vicinity on antimicrobial resistance and integrons in animal faecal Escherichia coli. Journal of Antimicrobial Chemotherapy, 57, 1215–1219.CrossRefGoogle Scholar
  23. Smet, A., Martel, A., Persoons, D., et al. (2008). Diversity of extended-spectrum beta-lactamases and class C beta-lactamases among cloacal Escherichia coli isolates in Belgian broiler farms. Antimicrobial Agents and Chemotherapy, 52, 1238–1243.CrossRefGoogle Scholar
  24. Sørum, H., & Sunde, M. (2001). Resistance to antibiotics in the normal flora of animals. Veterinary Research, 32, 227–241.CrossRefGoogle Scholar
  25. Versalovic, J., Koeuth, T., & Lupski, J. R. (1991). Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomes. Nucleic Acids Research, 19, 6823–6831.CrossRefGoogle Scholar
  26. Yang, C. M., Lin, M. F., Liao, P. C., et al. (2009). Comparison of antimicrobial resistance patterns between clinical and sewage isolates in a regional hospital in Taiwan. Letters in Applied Microbiology, 48, 560–565.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Song Li
    • 1
  • Miaoqing Zhao
    • 2
  • Yanling Li
    • 3
  • Ling Zhang
    • 3
  • Xianzhong Zhang
    • 3
  • Zengmin Miao
    • 3
    Email author
  1. 1.College of Basic MedicineTaishan Medical UniversityTai’anChina
  2. 2.Pathology DepartmentShandong Provincial HospitalJinanChina
  3. 3.College of Life SciencesTaishan Medical UniversityTai’anChina

Personalised recommendations