Aerobiologia

, Volume 28, Issue 4, pp 499–513 | Cite as

Building models for daily pollen concentrations

The example of 16 pollen taxa in 14 Swiss monitoring stations
Original Paper

Abstract

We describe a method for constructing prediction models for daily pollen concentrations of several pollen taxa in different measurement sites in Switzerland. The method relies on daily pollen concentration time series that were measured with Hirst samplers. Each prediction is based on the weather conditions observed near the pollen measurement site. For each prediction model, we do model assessment with a test data set spanning several years.

Keywords

Aerobiology Aeroallergen Poisson regression Data preprocessing Boosting Predictive modeling 

References

  1. Arizmendi, C., Sanchez, J., Ramos, N., & Ramos, G. (1993). Time series predictions with neural nets: Application to airborne pollen forecasting. International Journal of Biometeorology, 37(3):139–144.CrossRefGoogle Scholar
  2. Belmonte, J., & Canela, M. (2002). Modelling aerobiological time series. Application to Urticaceae. Aerobiologia, 18(3):287–295.CrossRefGoogle Scholar
  3. Belmonte, J., Canela, M., Guardia, R., Guardia, R., Sbai, L., Vendrell, M., et al. (1999). Aerobiological dynamics of the UrticSaceae pollen in Spain, 1992–98. Polen, 10, 79–91.Google Scholar
  4. Boyer, W. (1973). Air temperature, heat sums, and pollen shedding phenology of longleaf pine. Ecology, 54(2), 420–426.CrossRefGoogle Scholar
  5. Breiman, L. (1984). Classification and regression trees. London/Boca Raton, FL: Chapman & Hall/CRC.Google Scholar
  6. Bringfelt, B., Engström, I., & Nilsson, S. (1982). An evaluation of some models to predict airborne pollen concentration from meteorological conditions in Stockholm, Sweden. Grana, 21(1), 59–64.CrossRefGoogle Scholar
  7. Cameron, A., & Windmeijer, F. (1996). R-squared measures for count data regression models with applications to health-care utilization. Journal of Business & Economic Statistics, 14(2), 209–220.Google Scholar
  8. Castellano-Méndez, M., Aira, M., Iglesias, I., Jato, V., & González-Manteiga, W. (2005). Artificial neural networks as a useful tool to predict the risk level of betula pollen in the air. International Journal of Biometeorology, 49(5), 310–316.CrossRefGoogle Scholar
  9. Clot, B. (2001). Airborne birch pollen in Neuchâtel (Switzerland): Onset, peak and daily patterns. Aerobiologia, 17(1), 25–29.CrossRefGoogle Scholar
  10. Comtois, P., Alcazar, P., & Neron, D. (1999). Pollen counts statistics and its relevance to precision. Aerobiologia, 15(1), 19–28.CrossRefGoogle Scholar
  11. Comtois, P., & Sherknies, D. (1991). Pollen curves typology. Grana, 30(1), 184–189.CrossRefGoogle Scholar
  12. Cotos-Yáñez, T., Rodriguez-Rajo, F., & Jato, M. (2004). Short-term prediction of betula airborne pollen concentration in Vigo (NW Spain) using logistic additive models and partially linear models. International Journal of Biometeorology, 48(4), 179–185.CrossRefGoogle Scholar
  13. Cox, C., & Wathes, C. (1995). Bioaerosols handbook. USA: Lewis publishers.Google Scholar
  14. Frenguelli, G., & Bricchi, E. (1998). The use of the pheno-climatic model for forecasting the pollination of some arboreal taxa. Aerobiologia, 14(1), 39–44.CrossRefGoogle Scholar
  15. Friedman, J. (1984). A variable span smoother. Department of Statistics. Technical report. Stanford, CA: Stanford University.Google Scholar
  16. Friedman, J. (1991). Multivariate adaptive regression splines. The Annals of Statistics, 19(1), 1–67.CrossRefGoogle Scholar
  17. Friedman, J. (2001). Greedy function approximation: A gradient boosting machine. Annals of Statistics, 29(5), 1189–1232.CrossRefGoogle Scholar
  18. Friedman, J. (2002). Stochastic gradient boosting. Computational Statistics & Data Analysis, 38(4), 367–378.CrossRefGoogle Scholar
  19. Galán, C., Cariñanos, P., García-Mozo, H., Alcázar, P., & Domínguez-Vilches E. (2001) Model for forecasting Olea europaea L. airborne pollen in South–West Andalusia, Spain. International journal of biometeorology, 45(2), 59–63.CrossRefGoogle Scholar
  20. Gregory, P. (1961). The microbiology of the atmosphere. London: Leonard Hill.Google Scholar
  21. Hirst, J. (1952). An automatic volumetric spore trap. Annals of Applied Biology, 39(2), 257–265.CrossRefGoogle Scholar
  22. Isard, S., & Gage, S. (2001). Flow of life in the atmosphere: An airscape approach to understanding invasive organisms. East Lansing: Michigan State University Press.Google Scholar
  23. Kasprzyk, I., & Walanus, A. (2010). Description of the main poaceae pollen season using bi-Gaussian curves, and forecasting methods for the start and peak dates for this type of season in rzeszów and ostrowiec św. (SE Poland). Journal of Environmental Monitoring, 12(4), 906–916.CrossRefGoogle Scholar
  24. Makra, L., Juhász, M., Borsos, E., & Béczi, R. (2004). Meteorological variables connected with airborne ragweed pollen in southern Hungary. International Journal of Biometeorology, 49(1), 37–47.CrossRefGoogle Scholar
  25. Mandrioli, P., Comtois, P., & Levizzani, V. (1998). Methods in aerobiology. Bologna: Pitagora Editrice.Google Scholar
  26. Norris-Hill, J. (1995). The modelling of daily Poaceae pollen concentrations. Grana, 34(3), 182–188.CrossRefGoogle Scholar
  27. Pauling, A., Rotach, M., Gehrig, R., & Clot, B. (2011). A method to derive vegetation distribution maps for pollen dispersion models using birch as an example. International Journal of Biometeorology, 1–10.Google Scholar
  28. Peeters, A., Clot, B., Gehrig, R., et al. (1998). Luftpollengehalt in der schweiz. Zürich, Switzerland: SMA–Schweizerische Meteorologische Anstalt.Google Scholar
  29. Peng, R. (2008). A method for visualizing multivariate time series data. Journal of Statistical Software 25(1), 1–17.Google Scholar
  30. R Development Core Team (2010). R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing. ISBN 3-900051-07-0.Google Scholar
  31. Ranzi, A., Lauriola, P., Marletto, V., & Zinoni, F. (2003) Forecasting airborne pollen concentrations: Development of local models. Aerobiologia 19(1), 39–45.CrossRefGoogle Scholar
  32. Ridgeway, G. (2007). gbm: Generalized boosted regression models. R package version 1.6-3.Google Scholar
  33. Rodriguez-Rajo, F., Frenguelli, G., & Jato, M. (2003). Effect of air temperature on forecasting the start of the betula pollen season at two contrasting sites in the south of Europe (1995–2001). International Journal of Biometeorology, 47(3), 117–125.Google Scholar
  34. Schwartz, M. (2003). Phenology: An integrative environmental science. Dordrecht: Kluwer Academic Publishers.CrossRefGoogle Scholar
  35. Smith, M., & Emberlin, J. (2006). A 30-day-ahead forecast model for grass pollen in north London, United Kingdom. International Journal of Biometeorology, 50(4), 233–242.CrossRefGoogle Scholar
  36. Spieksma, F., Corden, J., Detandt, M., Millington, W., Nikkels, H., Nolard, N., et al. (2003). Quantitative trends in annual totals of five common airborne pollen types (betula, quercus, poaceae, urtica, and artemisia), at five pollen-monitoring stations in western Europe. Aerobiologia, 19(3), 171–184.CrossRefGoogle Scholar
  37. Spieksma, M., Emberlin, J., Hjelmroos, M., Jäger, S., & Leuschner, R. (1995). Atmospheric birch (Betula) pollen in Europe: Trends and fluctuations in annual quantities and the starting dates of the seasons. Grana, 34(1), 51–57.CrossRefGoogle Scholar
  38. Stach, A., Smith, M., Prieto Baena, J., & Emberlin, J. (2008) Long-term and short-term forecast models for poaceae (grass) pollen in Poznan, Poland, constructed using regression analysis. Environmental and Experimental Botany, 62(3), 323–332.CrossRefGoogle Scholar
  39. Stark, P., Ryan, L., McDonald, J., & Burge, H. (1997). Using meteorologic data to predict daily ragweed pollen levels. Aerobiologia, 13(3), 177–184.CrossRefGoogle Scholar
  40. Voukantsis, D., Niska, H., Karatzas, K., Riga, M., Damialis, A., & Vokou, D. (2010). Forecasting daily pollen concentrations using data-driven modeling methods in Thessaloniki, Greece. Atmospheric Environment, 44(39), 5101–5111.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Denis Hilaire
    • 1
  • Mathias W. Rotach
    • 1
    • 2
  • Bernard Clot
    • 1
  1. 1.Federal Office of Meteorology and Climatology MeteoSwissPayerneSwitzerland
  2. 2.Institute of Meteorology and GeophysicsUniversity of InnsbruckInnsbruckAustria

Personalised recommendations