, Volume 28, Issue 3, pp 375–390 | Cite as

Airborne bacteria, fungi, and endotoxin levels in residential microenvironments: a case study

  • R. BalasubramanianEmail author
  • P. Nainar
  • A. Rajasekar
Original Paper


Limited data are currently available on the concentrations of airborne bacteria, fungi, and endotoxins in indoor environments. The levels of aerial bacteria and fungi were measured at several microenvironments within a well-ventilated residential apartment in Singapore including the living room, kitchen, bedroom, toilet, and at a workplace environment by sampling indoor air onto culture medium plates using the 6-stage Andersen sampler. Total microbial counts were determined by collecting the air samples in water with the Andersen sampler, staining the resultant extracts with a fluorescent dye, acridine orange, and counting the microbes using a fluorescent microscope. The levels of airborne endotoxins were also determined by sampling the airborne microorganisms onto 0.4 μm polycarbonate membrane filter using the MiniVol sampler at 5 l/min for 20 h with a PM2.5 cut-off device. The aerial bacterial and fungal concentrations were found to be in the ranges of 117–2,873 CFU/m3 and 160–1,897 CFU/m3, respectively. The total microbial levels ranged from 49,000 to 218,000 microbes/m3. The predominant fungi occurring in the apartment were Aspergillus and Penicillium while the predominant bacterial strains appeared to be Staphylococcus and Micrococcus. The average indoor endotoxin level was detectable in the range of 6–39 EU/m3. The amount of ventilation and the types of human activities carried out in the indoor environment appeared to be important factors affecting the level of these airborne biological contaminants.


Bioaerosols Bacteria Fungi Airborne endotoxins Indoor Aerosols Allergens PM2.5 



The authors thank Ms. Ong Yong Mei for her kind assistance with the collection and analysis of air samples during the field studies.


  1. Abt, E., Suh, H. H., Allen, G., & Koutrakis, P. (2000). Characterisation of indoor particle sources: A study conducted in the metropolitan Boston area. Environmental Health Perspectives, 108, 35–44.CrossRefGoogle Scholar
  2. ACGIH. (1989). Guidelines for the assessment of bioaerosols in the indoor environment. In American Conference of Governmental Industrial Hygienists, Cincinnati, OH.Google Scholar
  3. Alexopoulos, C. J., & Mims, C. W. (1952). Introductory mycology (3rd ed.). USA: John Wiley & Sons Inc.Google Scholar
  4. Andersen, A. A. (1958). New sampler for collection, sizing and enumeration of viable airborne particles. Journal of Bacteriology, 76, 471–484.Google Scholar
  5. ASHRAE Standard-55. (1992). Thermal environment conditions for human occupancy. In American society of heating, refrigerating & air-conditioning engineers, Inc, Atlanta, GA, USA.Google Scholar
  6. Awad, A. H. A. (2007). Airborne dust, bacteria, actinomycetes and fungi at a flourmill. Aerobiologia, 23, 59–69.CrossRefGoogle Scholar
  7. Aydogdu, H., Asan, A., Otkun, M. T., & Ture, M. (2005). Monitoring of fungi and bacteria in the indoor air of primary schools in Edirne city, Turkey. Indoor and Built Environment, 14, 411–425.CrossRefGoogle Scholar
  8. Brunekreef, B., de Rijk, L., Verhoeff, A. P., & Samson, R. (1990). Classification of dampness in homes. In Indoor Air’90. Proceedings of the 5th International Conference on Indoor Air Quality and Climate, Toronto (pp. 15–20).Google Scholar
  9. Burge, H. A. (1985). Fungus allergens. Clinical Reviews in Allergy, 3, 319–329.CrossRefGoogle Scholar
  10. Burge, H. (1990). Bioaerosols: Prevalence and health effects in the indoor environment. Journal of Allergy and Clinical Immunology, 86, 687–701.CrossRefGoogle Scholar
  11. Carty, C. L., Gehring, U., Cyrys, J., Bischof, W., & Heinrich, J. (2003). Seasonal variability of endotoxin in ambient fine particulate matter. Journal of Environmental Monitoring, 5, 953–958.CrossRefGoogle Scholar
  12. Desai, M. R., & Ghosh, S. K. (2003). Occupational exposure to airborne fungi among ricemill workerswith special reference to aflatoxin producing A-flavus strains. Annals of Agricultural and Environmental Medicine, 10, 159–162.Google Scholar
  13. Douwes, J., Versloot, P., Hollander, A., Heederik, D., & Doekes, G. (1995). Influence of various dust sampling and extraction methods on the measurement of airborne endotoxin. Applied and Environmental Microbiology, 61, 1763–1769.Google Scholar
  14. Dowd, S. E., & Maier, R. M. (2000). Aeromicrobiology. In R. M. Maier, I. L. Pepper, & C. P. Gerba (Eds.), Environmetal microbiology (pp. 91–122). San Diego: Academic.Google Scholar
  15. Ellis, J. J. (1981). The effect of medium temperature and age on Rhizopus delemar sporangiospore size. Mycologia, 73, 362–368.CrossRefGoogle Scholar
  16. Gehring, U., Bischof, W., Fahlbusch, B., Wichmann, H. E., & Heinrich, J. (2002). House dust endotoxin and allergic sensitization in children. American Journal of Respiratory and Critical Care Medicine, 166, 939–944.CrossRefGoogle Scholar
  17. Gehring, U., Bolte, G., Borte, M., Bischof, W., Fahlbusch, B., Wichmann, H. E., et al. (2001). Exposure to endotoxin decreases the risk of atopic eczema in infancy: A cohort study. Journal of Allergy and Clinical Immunology, 108, 847–854.CrossRefGoogle Scholar
  18. Gereda, J. E., Klinnert, M. D., Price, R., Leung, Y. M. D., & Liu, H. A. (2001). Metropolitan home living conditions associated with indoor endotoxin levels. Journal of Allergy and Clinical Immunology, 107, 790–796.CrossRefGoogle Scholar
  19. Gorny, R. L., Dutkiewicz, J., & Krysiska-Traczyk, E. (1999). Size distribution of bacterial and fungal bioaerosols in indoor air. Annals of Agriculture and Environmental Medicine, 6, 105–113.Google Scholar
  20. Griffiths, W. D., & DeCosemo, G. A. L. (1994). The assessment of bioaerosols: A critical review. Journal of Aerosol Science, 25, 1425–1458.CrossRefGoogle Scholar
  21. Guo, H., Lee, S. C., & Chan, L. Y. (2004). Indoor air quality investigation at air-conditioned and non-air-conditioned markets in Hong Kong. Science of the Total Environmental, 323, 87–98.CrossRefGoogle Scholar
  22. Haas, D., Habib, J., Galler, H., Buzina, W., Schlacher, R., Marth, E., et al. (2007). Assessment of indoor air in Austrian apartments with and without visible mold growth. Atmospheric Environment, 41, 5192–5201.CrossRefGoogle Scholar
  23. Hameed, A. A. A., Shakour, A. A., & Yasser, H. I. (2003). Evaluation of bio-aerosols at an animal feed manufacturing industry: A case study. Aerobiologia, 19, 1573–3025.Google Scholar
  24. Heederik, D., Brouwer, R., Biersteker, K., & Boleij, J. S. M. (1991). Relationship of airborne endotoxin and bacteria levels in pig farms with the lung function and respiratory symptoms of farmers. International Archives of Occupational and Environmental Health, 62, 595–601.CrossRefGoogle Scholar
  25. Heinrich, J., Pitz, M., Bischof, W., Krug, N., & Borm, P. J. A. (2003). Endotoxin in fine (PM2.5) and coarse (PM2.5–10) particle mass of ambient aerosols. A temporo-spatial analysis. Atmospheric Environment, 37, 3659–3667.CrossRefGoogle Scholar
  26. Hsu, N. Y., Chen, P. Y., Chang, H. W., & Su, H. J. (2011). Changes in profiles of airborne fungi in flooded homes in southern Taiwan after Typhoon Moraket. Science of the Total Environment, 409, 1677–1682.CrossRefGoogle Scholar
  27. Hunter, C. A., Grant, C., Flannigan, B., & Bravery, A. F. (1988). Mould in buildings: The air spora of domestic dwellings. International Biodeterioration, 24, 81–101.CrossRefGoogle Scholar
  28. Hunter, C. A., Hull, A. V., Higham, D. F., Grimes, C. P., & Lea, R. G. (1996). Fungi and bacteria. In R. W. Berry, V. M. Brown, S. K. D. Coward, D. R. Crump, M. Gavin, C. P. Grimes, D. F. Higham, A. V. Hull, C. A. Hunter, R. G. Lea, J. W. Llewellyn, & G. J. Raw (Eds.), Indoor air quality in homes: The building research establishment indoor environment study (pp. 99–117). Wartford: Building Research Establishment.Google Scholar
  29. Jothish, P. S., & Nayar, T. S. (2004). Airborne fungal spores in a sawmill environment in Palakkad District, Kerala, India. Aerobiologia, 20, 75–81.CrossRefGoogle Scholar
  30. Karlsson, K., & Malmberg, P. (1989). Characterisation of exposure to moulds and actinomycetes in agricultural dusts by scanning electron microscopy. Scandinavian Journal of Work and Environmental Health, 5, 353–359.CrossRefGoogle Scholar
  31. Kim, K. Y., & Kim, C. N. (2007). Airborne microbiological characteristics in public buildings of Korea. Building and Environment, 42, 2188–2196.CrossRefGoogle Scholar
  32. Kullman, G. J., Thorne, P. S., Waldron, P. F., Marx, J. J., Ault, B., Lewis, D. M., Siegel, P. D., Olenchock S. A., & Merchant, J. A. (1998). Organic dust exposures from work in diary barns. American Industrial Hygiene Association Journal, 59, 403–414.Google Scholar
  33. Lacey, J., & Dutkiewicz, J. (1994). Bioaerosols and occupational lung-disease. Journal of Aerosol Science, 25, 1371–1404.CrossRefGoogle Scholar
  34. Lee, S. (2010). Prevalence of childhood asthma in Korea: International study of asthma and allergies in childhood. Allergy Asthma Immunol Res, 2, 61–64. Google Scholar
  35. Lee, K. Y. A., Chan, C. K., Fang, M., & Lau, P. S. A. (2004). The 3-hydroxy fatty acids as biomarkers for quantification and characterisation of endotoxins and gram-negative bacteria in atmospheric aerosols in Hong Kong. Atmospheric Environment, 38, 6307–6317.CrossRefGoogle Scholar
  36. Lee, J. H., & Jo, W. K. (2006). Characteristics of indoor and outdoor bioaerosols at Korean high-rise apartment buildings. Environmental Research, 101, 11–17.CrossRefGoogle Scholar
  37. Li, C. S., & Kuo, Y.-M. (1993). Characteristics of indoor viable fungi in Taiwan. In Indoor Air’93. Proceedings of the 6th International Conference on Indoor Air Quality and Climate, Helsinki (pp. 183–187).Google Scholar
  38. Liao, V. H., Chio, C. P., Chou, W. C., Ju, Y. R., & Liao, C. M. (2010). Modeling human health risks of airborne endotoxin in homes during the winter and summer seasons. Science of the Total Environment, 408, 1530–1537.CrossRefGoogle Scholar
  39. Lim, T. K. (2003). Overview of asthma care in Singapore. The Singapore Family Physician, 29, 7–8.Google Scholar
  40. Long, M. C., Suh, H. H., Kobzik, L., Catalano, P. J., Ning, Y. Y., & Koutrakis, P. (2001). A pilot investigation of the relative toxicity of indoor and outdoor fine particles: In vitro effects of endotoxin and other particulate properties. Environmental Health Perspectives, 109, 1019–1026.Google Scholar
  41. Meklin, T., Hyvärinen, A., Toivola, M., Reponen, T., Koponen, V., Husman, T., et al. (2003). Effect of building frame and moisture damage on microbiological indoor air quality in school buildings. American Industrial Hygiene Association Journal, 64, 108–116.CrossRefGoogle Scholar
  42. Michel, O., Ginanni, R., Duchateau, J., Vertongen, F., Le Bon, B., & Sergysels, R. (1991). Domestic endotoxin exposure and clinical severity of asthma. Clinical and Experimental Allergy, 21, 441–448.CrossRefGoogle Scholar
  43. Michel, O., Ginanni, R., & Sergysels, R. (1992). Relation between the bronchial obstractive response to inhaled lipopolysaccharide and bronchial responsiveness to histamine. Thorax, 47, 288–291.CrossRefGoogle Scholar
  44. Michel, O., Kips, J., Duchateau, J., Vertongen, F., Robert, L., Collet, H., et al. (1996). Severity of asthma is related to endotoxin in house dust. American Journal of Respiratory Critical Care and Medicine, 154, 1641–1646.Google Scholar
  45. Moschandreas, D. J., Cha, D. K., & Qian, J. (1996). Measurement of indoor bioaerosol levels by direct counting method. Journal of Environmental Engineering, 122, 374–378.CrossRefGoogle Scholar
  46. Muilenberg, M. L. (1995). The outdoor aerosols. In H. A. Burge (Ed.), Bioaerosols, indoor air research series (p. 163). Boca Raton, Florida, USA: CRC Press, Inc.Google Scholar
  47. Musk, A. W., Venables, K. M., Crook, B., Nunn, A. J., Hawkins, R., & Crook, G. D. W. (1989). Respiratory symptoms, lung-function, and sensitization to flour in a British bakery. British Journal of Industrial medicine, 46, 636–642.Google Scholar
  48. NEA. (1996). Indoor air quality guidelines. In Guidelines for good indoor air quality in office premises (1st ed.). Singapore: National Environmental Agency.
  49. Ng, T. P., & Tan, W. C. (1999). Temporal trends and ethnic variations in asthma mortality in Singapore, 1976–1995. Thorax, 54, 990–994.CrossRefGoogle Scholar
  50. Nilsson, S., Merritt, A. S., & Bellander, T. (2011). Endotoxins in urban air in Stockholm, Swedan. Atmospheric Environment, 45, 266–270.CrossRefGoogle Scholar
  51. NUH. (2002). The NUH Children’s Medical Institute (CMI) launches “I CAN!” programme for children suffering from asthma and allergies in Singapore.
  52. NUH. (2003). Asia-Pacific specialists in asthma and allergies to look into increasing number of children suffering from asthma and allergies.
  53. Oppliger, A., Rusca, S., Charriere, N., Duc, T. V., & Droz, P. O. (2005). Assessment of bioaerosols and inhalable dust exposure in Swiss sawmills. Annals of Occupational Hygiene, 49, 385–391.CrossRefGoogle Scholar
  54. Osornio-Vargas, A. R., Bonner, J. C., Alfaro-Moreno, E., Martinez, L., Garcia-Cuellar, C., Rosales, S. P., et al. (2003). Proinflammtory and cytotoxic effects of Mexico city air pollution particulate matter in vitro are dependent on particle size and composition. Environmental Health Perspectives, 111, 1289–1294.CrossRefGoogle Scholar
  55. Owen, M. K., Ensor, D. S., & Sparks, L. (1992). Airborne particle sizes and sources found in indoor air. Atmospheric Environmental Part A-General Topics, 26, 2149–2162.CrossRefGoogle Scholar
  56. Palmgren, U., Ström, G., Blomquist, G., & Malmberg, P. (1986). Collection of airborne microorganisms on nucleopore filters, estimation and analysis-CAMNEA method. Journal of Applied Bacteriology, 61, 401–406.CrossRefGoogle Scholar
  57. Park, J. H., Spiegelman, D. L., Burge, H., Gold, D. R., Chew, G. L., & Milton, D. K. (2000). Longitudinal study of dust and airborne endotoxin in the home. Environmental Health Perspectives, 109, 859–864.CrossRefGoogle Scholar
  58. Park, J. H., Spiegelman, D. L., Gold, D. R., Burge, H. A., & Milton, D. K. (2001). Predictors of airborne endotoxin in the home. Environmental Health and Perspectives, 109, 859–864.CrossRefGoogle Scholar
  59. Park, C. W., Yoon, K. Y., Kim, Y. D., Park, J. H., & Hwang, J. (2011). Effects of condensational growth on culturability of airborne bacteria: Implications for sampling and control of bioaerosols. Journal of Aerosol Science, 42, 213–223.CrossRefGoogle Scholar
  60. Pasanen, A. L. (1992). Airborne mesophilic fungal spores in various residential environments. Atmospheric Environmental Part A-General Topics, 26, 2861–2868.CrossRefGoogle Scholar
  61. Pasanen, A. L., Kasanen, J. P., Rautiala, S., Ikaheimo, M., Rantamaki, J., & Kaariainen, H. (2000). Fungal growth and survival in building materials under fluctuating moisture and temperature conditions. International Biodeterioration and Biodegadation, 46, 117–127.CrossRefGoogle Scholar
  62. Platts-Mills, T. A. E., Custis, N. J., Woodfolk, J. A., & Platts-Mills, T. A. E. (2005). Airborne endotoxin in homes with domestic animals: Implications for cat-specific tolerance. Journal of Allergy and Clinical Immunology, 116, 384–389.CrossRefGoogle Scholar
  63. Rennie, D. C., Lawson, J. A., Kirychuk, S. P., Paterson, C., Willson, P. J., Senthilselvan, A., et al. (2008). Assessment of endotoxin levels in the home and current asthma and wheeze in school-age children. Indoor Air, 18, 447–453.CrossRefGoogle Scholar
  64. Reponen, T., Hyvarinen, A., Ruuskanen, J., Raunemaa, T., & Nevalainen, A. (1994). Comparison of concentrations and size distributions of fungal spores in buildings with and without mold problems. Journal Aerosol Science, 25, 1595–1603.CrossRefGoogle Scholar
  65. Reponen, T., Hyvärinen, A., Ruuskanen, J., Raunemaa, T., & Nevlalainen, A. (1993). Size distribution of fungal spores in houses with mould problems. In Indoor Air’93. Proceedings of the 6th International Conference on Indoor Air Quality and Climate, Helsinki (pp. 183–187).Google Scholar
  66. Reponen, T., Willeke, K., Ginshpun, S., & Nevlalainen, A. (2001). Biological particle sampling. In P. A. Baron & K. Willeke (Eds.), Aerosol measurement. Hoboken, New Jersey, USA: John Wiley & sons Inc.Google Scholar
  67. Reynolds, S. J., Thorne, P. S., Donham, K. J., Croteau, E. A., et al. (2002). Comparison of endotoxin assays using agricultural dusts. American Industrial Hygiene Assoc Journal, 63, 430–438.CrossRefGoogle Scholar
  68. Rolka, H., Krajewska-Kulak, E., Lukaszuk, C., Oksiejczuk, E., Jakoniuk, P., Leszczynska, K., et al. (2005). Indoor air studies of fungi contamination of social welfare home in Czerewki in north-east part of Poland. Roczniki Akademii Medycznej w Bialymstoku, 50(Suppl 1), 26–30.Google Scholar
  69. Rosas, I., Calderon, C., Salinas, E., Martınez, L., Alfaro-Moreno, E., & Milton, D. K. (2001). Animal and worker exposure to dust and biological particles in animal care houses. Aerobiologia, 17, 49–59.CrossRefGoogle Scholar
  70. Rylander, R. (2002). Endotoxin in the environment—exposure and effects. Journal of Endotoxin Research, 8, 241–252.Google Scholar
  71. Rylander, R., Bake, B., Fischer, J. J., & Helander, I. M. (1989). Pulmonary function and symptoms after inhalation of endotoxin. American Review of Respiratory Disease, 140, 981–986.Google Scholar
  72. Savino, E., & Caretta, G. (1992). Airborne fungi in an Italian rice mill. Aerobiologia, 8, 267–275.CrossRefGoogle Scholar
  73. Schram-Bijkerk, D., Doekes, G., Douwes, J., Boeve, M., Riedler, J., Üblagger, E., et al. (2005). Bacterial and fungal agents in house dust and wheez in children: The PARSIFAL study. Clinical and Experimental Allergy, 35, 1272–1278.CrossRefGoogle Scholar
  74. Shelton, B. G., Kirkland, K. H., Flanders, W. D., & Morris, G. K. (2002). Profiles of airborne fungi in buildings and outdoor environments in the United States. Applied and Environmental Microbiology, 68, 1743–1753.CrossRefGoogle Scholar
  75. Singh, A., & Singh, A. B. (1994). Airborne fungi in a bakery and the prevalence of respiratory dysfunction among workers. Grana, 33, 349–358.CrossRefGoogle Scholar
  76. Sly, R. M. (1988). Mortality from asthma, 1979–1984. Journal of Allergy and Clinical Immunology, 82, 705–717.CrossRefGoogle Scholar
  77. Sneath, P. H. A., Mair, N. S., Sharpe, M. E., & Holt, J. G. (1986). Bergey’s manual of systematic bacteriology. Baltimore: Williams & Wilkins Inc.Google Scholar
  78. So, S. Y., Ng, M. M. T., & Ip, M. M. S. (1990). Rising asthma mortality in Hong Kong, 1976–85. Respiratory Medicine, 84, 457–467.CrossRefGoogle Scholar
  79. Su, H. J., Wu, P. C., Chen, H. L., Lee, F. C., & Lin, L. L. (2001). Exposure assessment of indoor allergens, endotoxin, and airborne fungi for homes in southern Taiwan. Environmental Research, 85, 135–144.CrossRefGoogle Scholar
  80. Sykes, P., Morris, R. H. K., Allen, J. A., Wildsmith, J. D., & Jones, K. P. (2011). Workers’ exposure to dust, endotoxin and β-(1–3) glucan at four large-scale composting facilities. Waste Management, 31, 423–430.CrossRefGoogle Scholar
  81. Thorne, P. S., Cohn, R. D., Mav, D., Arbes, S. J., & Zeldin, D. C. (2009). Predictors of endotoxin levels in U.S. housing. Environmental Health Perspectives, 117, 763–771.Google Scholar
  82. Thorne, P. S., & DeKoster, J. A. (1996). Environmental assessment of aerosols, bioaerosols and airborne endotoxins in a machining plant. American Industrial Hygiene Association Journal, 57, 1163–1167.CrossRefGoogle Scholar
  83. Thorne, P. S., Reynolds, S. J., Milton, D. K., & Bloebaum, P. D. (1997). Field evaluation of endotoxin air sampling assay methods. American Industrial Hygiene Association Journal, 58, 792–799.CrossRefGoogle Scholar
  84. Zorman, T., & Jersek, B. (2008). Assessment of bioaerosol concentrations in different indoor environments. Indoor Built Environment, 17, 155–163.CrossRefGoogle Scholar
  85. Zucker, B. A., & Muller, W. (2004). Airborne endotoxins and airborne grame-negative bacteria in a residential neighborhood. Water, Air, and Soil pollution, 158, 67–75.CrossRefGoogle Scholar
  86. Zuraimi, M. S., & Tham, K. W. (2008). Indoor air quality and its determinants in tropical child care centers. Atmospheric Environment, 42, 2225–2239.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Department of Civil and Environmental Engineering, Faculty of EngineeringNational University of SingaporeSingaporeSingapore
  2. 2.Department of MicrobiologyTirunelveli Medical CollegeTirunelveliIndia

Personalised recommendations