Advertisement

Aerobiologia

, Volume 27, Issue 3, pp 213–220 | Cite as

The effects of large-scale atmospheric fields on the cypress pollen season in Tuscany (Central Italy)

  • A. Dalla Marta
  • D. Grifoni
  • T. Torrigiani Malaspina
  • L. Cecchi
  • F. Barbano
  • M. Mancini
  • S. Orlandini
Original Paper

Abstract

This research was performed for the purpose of analysing the relationships between large-scale meteorological information, in particular the North Atlantic Oscillation (NAO) index and the Sea Surface Temperature (SST), and the timing and magnitude of the Cupressaceae pollen season in the Pistoia district of Central Italy. The results demonstrated that in specific periods of the year, the NAO index, by partially determining the distribution of the main meteorological variables over the study area, is negatively correlated with the start and the end, as well as the peak day of pollen concentration. Pollen data were also correlated with the SST of the North Atlantic Ocean east of the Azores for the September–December period of the previous year, which is significant for exploring possibilities in terms of predicting the timing and magnitude of the cypress pollen season. The analysis of such meteorological variables and indices could be used to improve the existing forecasting systems of the phenology of the cypress pollen season. Moreover, the possibility of using meteorological information freely available on internet could cut costs and reduce spatial and temporal representativeness limitations relating to weather monitoring in loco.

Keywords

Cupressaceae North Atlantic Oscillation Sea Surface Temperature Phenology Allergy 

Abbreviations

NAO

North Atlantic Oscillation

SST

Sea Surface Temperature

SLP

Sea Level Pressure

ENSO

El Niño Southern Oscillation

SI

Seasonal Index

MPS

Main Pollen Season

SD

Start Date

ED

End Date

PD

Peak Day

PV

Peak Pollen Value

Notes

Acknowledgments

The authors wish to thank Marzia Onorari and Maria Paola Domeneghetti ‘Articolazione Funzionale di Aerobiologia-ARPAT, Pistoia’ for providing aerobiological data and Giorgio Bartolini and Francesco Piani for the meteorological data. The study was supported by the MeteoSalute project, Servizio Sanitario Regionale, Tuscany Region.

References

  1. Atkinson, M. D., Kettlewell, P. S., Hollins, P. D., Stephenson, D. B., & Hardwik, N. V. (2005). Summer climate mediates UK wheat quality response to winter North Atlantic oscillation. Agricultural and Forest Meteorology, 130(1–2), 27–37.CrossRefGoogle Scholar
  2. Avolio, E., Pasqualoni, L., Federico, S., Fornaciari, M., Bonofiglio, T., Orlandi, F., et al. (2008). Correlation between large-scale atmospheric fields and the olive pollen season in central Italy. International Journal of Biometeorology, 52, 787–796.CrossRefGoogle Scholar
  3. Bartolini, G., Morabito, M., Crisci, A., Grifoni, D., Torrigiani, T., Petralli, M., et al. (2008). Recent trends in Tuscany (Italy) summer temperature and indices of extremes. International Journal of Climatology, 28, 1751–1760.CrossRefGoogle Scholar
  4. Benestad, R. E. (2001). The cause of warming over Norway in the ECHAM4/OPYC3 GHG integration. International Journal of Climatology, 21, 371–387.CrossRefGoogle Scholar
  5. Caiaffa, M. F., Macchia, I., Strada, F., Bariletto, G., Scarpelli, F., & Tursi, A. (1993). Airborne Cupressaceae pollen in southern Italy. Annals of Allergy, 71, 45–50.Google Scholar
  6. Calleja, M., & Farrera, I. (2003). Le cypres: Un nouveau fleau pour la region Rhone-Alpes? Allergy Immunology, 35, 92–96.Google Scholar
  7. Caramiello, R., Gallesio, M. T., Siniscalco, C., & Leone, F. (1991). Aerobiological data and clinical incidence in urban and extra urban environments. Grana, 30, 109–112.CrossRefGoogle Scholar
  8. Craddock, J. M. (1979). Methods of comparing annual rainfall records for climatic purposes. Weather, 34, 332–346.Google Scholar
  9. Crepinsek, Z., Kajfez-Bogataj, L., & Bergant, K. (2002). Correlation between spring phenophases and North Atlantic oscillation index in Slovenia. Research Reports, Biotechnical Faculty, University of Ljubljana, Agriculture, Vol. 79, pp. 89–98.Google Scholar
  10. D’Amato, G., Cecchi, L., Bonini, S., Nunes, C., Annesi-Maesano, I., Behrendt, H., et al. (2007). Allergenic pollen and pollen allergy in Europe. Allergy, 62, 976–990.CrossRefGoogle Scholar
  11. D’Odorico, P., Yoo, J. C., & Jaeger, S. (2002). Changing seasons: an effect of the North Atlantic oscillation? Journal of Climate, 15, 435–445.CrossRefGoogle Scholar
  12. Dalla Marta, A., Grifoni, D., Mancini, M., Zipoli, G., & Orlandini, S. (2010a). The influence of climate on durum wheat quality in Tuscany, Central Italy. International Journal of Biometeorology. doi: 10.1007/s00484-010-0310-8.
  13. Dalla Marta, A., Grifoni, D., Mancini, M., Storchi, P., Zipoli, G., & Orlandini, S. (2010b). Analysis of the relationships between climate variability and grapevine phenology in the Nobile di Montepulciano wine production area. Journal of Agricultural Science. doi: 10.1017/S0021859610000432.
  14. Gormsen, A. K., Hense, A., Toldam-Andersen, T. B., & Braun, P. (2005). Large-scale climate variability and its effects on mean temperature and flowering time of Prunus and Betula in Denmark. Theoretical and Applied Climatology, 82, 41–50.CrossRefGoogle Scholar
  15. Grifoni, D., Mancini, M., Maracchi, G., Orlandini, S., & Zipoli, G. (2006). Analysis of Italian wine quality using freely available meteorological information. American Journal of Enology and Viticulture, 57(3), 339–346.Google Scholar
  16. Hirst, J. M. (1952). An automatic volumetric spore trap. Annals of Applied Biology, 39, 257–265.CrossRefGoogle Scholar
  17. Hurrel, J. W. (1995). Decadal trends in North Atlantic oscillation: Regional temperature and precipitation. Science, 269, 676–679.CrossRefGoogle Scholar
  18. Hurrel, J. W., & Van Loon, H. (1997). Decadal variations in climate associated with the North Atlantic oscillation. Climate Change, 36(3–4), 301–326.CrossRefGoogle Scholar
  19. Hurrell, J. W., Kushnir, Y., Ottersen, G.,& Visbeck, M. (Eds.) (2003). The North Atlantic oscillation: Climatic significance and environmental impact. Geophysical Monograph, Vol. 134, pp. 1–35. Copyright 2003 by the American Geophysical Union  10.1029/134GM01.
  20. Jones, P. D., Jonsson, T., & Wheeler, D. (1997). Extension to the North Atlantic oscillation using early instrumental pressure observations from Gibraltar and South–West Iceland. International Journal of Climatology, 17, 1433–1450.CrossRefGoogle Scholar
  21. Kalnay, Y. E., Kanamitsu, M., Kistlter, R., Collins, W., Deaven, D., Gandin, L., et al. (1996). The NCEP/NCAR 40-year reanalysis project. Bulletin of American Meteorology Society, 77, 437–471.CrossRefGoogle Scholar
  22. Klaveness, D., & Wielgolaski, F. E. (1996). Plant phenology in Norway—a summary of past and present first flowering dates (FFDs) with emphasis on conditions within three different areas. Phenology and Seasonality, 1, 47–61.Google Scholar
  23. Kushnir, Y. (1999). Europe’s winter prospects. Nature, 398, 289–291.CrossRefGoogle Scholar
  24. Laaidi, M. (2001). Forecasting the start of the pollen season of poaceae: Evaluation of some methods based on meteorological factors. International Journal of Biometeorology, 45(1), 1–7.CrossRefGoogle Scholar
  25. Menzel, A. (2003). Plant phenological anomalies in Germany and their relation to air temperature and NAO. Climate Change, 57, 243–263.CrossRefGoogle Scholar
  26. Nemani, R. R., White, M. A., Cayan, D. R., Jones, G. V., Running, S. W., Coughlan, J. C., & Peterson, D. L. (2001). Asymmetric warming over coastal California and its impact on the premium wine industry. Climate Research, 19, 25–34.CrossRefGoogle Scholar
  27. Osborn, T. J. (2002). The winter North Atlantic oscillation: roles of internal variability and greenhouse gas forcing. CLIVAR Exchanges, 25, 54–58.Google Scholar
  28. Osborn, T. J., Briffa, K. R., Tett, S. F. B., Jones, P. D., & Trigo, R. M. (1999). Evaluation of the North Atlantic oscillation as simulated by a coupled climate model. Climate Dynamics, 15, 685–702.CrossRefGoogle Scholar
  29. Panzani, R., Centanni, G., & Brunel, M. (1986). Increase of respiratory allergy to the pollens of cypress in the south of France. Annals of Allergy, 56, 460–463.Google Scholar
  30. Papa, G., Romano, A., Quarantino, D., Di Fonso, M., Viola, M., Artesani, M. C., et al. (2000). Cupressaceae in Tirana (Albania) 1996–1998: Aerobiological data and prevalence of Cupressaceae sensitization in allergic patients. Allergy Immunology, 31, 122–124.Google Scholar
  31. Piovesan, G., & Schirone, B. (2000). Winter North Atlantic oscillation effects on the tree rings of the Italian beech (Fagus sylvatica L.). International Journal of Biometeorology, 44, 121–127.CrossRefGoogle Scholar
  32. Post, E., & Stenseth, N. C. (1999). Climatic variability, plant phenology, and northern ungulates. Ecology, 80, 1322–1339.CrossRefGoogle Scholar
  33. Rodríguez-Rajo, F. J., Dopazo, A., & Jato, V. (2004). Environmental factors affecting the start of pollen season and concentrations of airborne alnus pollen in two localities of Galicia (NW Spain). Annals of Agricultural Environmetal Medicine, 11, 35–44.Google Scholar
  34. Rodríguez -Rajo, F. J., Smith, M., Emberlin, J., Stach, A., Rantio-Lehtimaki, A., Caulton, E., Thibaudon, M., Lachasse, C., Jaeger, S., Gehrig, R., Jato, V., Galan, C., Alcazar, P., & Frenguelli, G. (2010). Influence of the North Atlantic oscillation in an important aeroallergen (Poaceae) across Europe. In: ESF-MedCLIVAR workshop on hydrological, socioeconomic and ecological impacts of the North Atlantic oscillation in the Mediterranean region. 24–27 May, 2010, Zaragoza, Spain, pp. 53–54.Google Scholar
  35. Sivle, A. (2005). Climatic Oscillations in the Period 1910–2004 (in Norwegian). Bergen, Norway. University of Bergen: Geophysical Institute.Google Scholar
  36. Smith, M., Emberlin, J., Stach, A., Rantio-Lehtimaki, A., Caulton, E., Thibaudon, M., et al. (2009). Influence of the North Atlantic oscillation on grass pollen counts in Europe. Aerobiologia, 25, 321–332.CrossRefGoogle Scholar
  37. Stenseth, N. C., Mysterud, A., Ottersen, G., Hurrell, J. W., Chan, K. S., & Lima, M. (2002). Ecological effects of climate fluctuations. Science, 297, 1292–1296.CrossRefGoogle Scholar
  38. Subiza, J., Jerez, M., Jimenez, J. A., Narganes, M. J., Cabrera, M., Varela, S., et al. (1995). Allergenic pollen pollinosis in Madrid. Journal of Allergy and Clinical Immunology, 96, 15–23.CrossRefGoogle Scholar
  39. Torrigiani Malaspina, T., Cecchi, L., Morabito, M., Onorari, M., Domeneghetti, M. P., & Orlandini, S. (2007). Influence of meteorological conditions on male flower phenology of Cupressus Sempervirens and correlation with pollen production in florence. Trees-Structure and Function, 21(5), 507–514.Google Scholar
  40. Vose, R. S., & Menne, M. J. (2004). A method to determine station density requirements for climate observing networks. Journal of Climate, 17, 2961–2971.CrossRefGoogle Scholar
  41. Wanner, H., Bronnimann, S., Casty, C., Gyalistras, D., Luterbacher, J., Schmutz, C., et al. (2001). North Atlantic oscillation–concepts and studies. Survey in Geophysics, 22(4), 321–381.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • A. Dalla Marta
    • 1
  • D. Grifoni
    • 2
  • T. Torrigiani Malaspina
    • 3
  • L. Cecchi
    • 4
  • F. Barbano
    • 4
  • M. Mancini
    • 1
  • S. Orlandini
    • 1
  1. 1.Department of Plant, Soil and Environmental ScienceUniversity of FlorenceFlorenceItaly
  2. 2.CNRInstitute of BiometeorologyFlorenceItaly
  3. 3.Tuscany RegionConsorzio LAMMASesto FiorentinoItaly
  4. 4.Interdepartmental Centre of Bioclimatology (CIBIC)University of FlorenceFlorenceItaly

Personalised recommendations