, Volume 27, Issue 3, pp 181–189 | Cite as

Interannual variability of pollen productivity and transport in mid-North America from 1997 to 2009

  • Kendra K. McLauchlanEmail author
  • Charles S. Barnes
  • Joseph M. Craine
Original Paper


Understanding the causes of interannual variability in atmospheric pollen concentration is an important but elusive goal for public health and environmental change. We analyzed long-term daily records of pollen counts from urban Kansas City, Missouri, USA collected from 1997 to 2009 for three pollen groups: Ambrosia, Poaceae, and a third group which is mostly composed of arboreal pollen types. The annual pollen index varied from 8,368 to 80,822 over the thirteen-year period. Although Ambrosia pollen is often thought to be associated with droughts and disturbance, years with high Ambrosia pollen were associated with high summer precipitation to the south of Kansas City. Years with high Poaceae pollen were associated with high spring precipitation to the south of the city. In support of the southern influence to Kansas City pollen, Ambrosia and Poaceae pollen mostly arrived on southern winds. In contrast to the other two pollen groups, the arboreal pollen was most associated with growing season precipitation to the east of Kansas City, although it was still highest on days with southern winds. Based on the correlations with climate, the severity of an upcoming allergy season may be predicted with early-season precipitation data, while short-term severity can be forecast from local weather patterns.


Climate Grass Great plains Pollen Ragweed 



We thank Julie Commerford for providing cartographic assistance. Jay Portnoy, Julie Landuyt, Freddy Pachecho, Frank Hu, and Minati Dhar provided the original pollen data from Children’s Mercy Hospital. Mary Knapp provided data from three weather stations. Konza Prairie Biological Station provided weather data from Kansas. We appreciate helpful discussions with Doug Goodin and John Harrington Jr. This research was supported by grant BCS-0821959 from the National Science Foundation to K.K.M. The data collection has been supported at times by Marrion-Merril-Dow and the Kansas City Allergy Society and throughout its history by Children’s Mercy Hospital.


  1. Barnes, C., Pacheco, F., Landuyt, J., Hu, F., & Portnoy, J. (2001). The effect of temperature, relative humidity and rainfall on airborne ragweed pollen concentrations. Aerobiologia, 17, 61–68.CrossRefGoogle Scholar
  2. Cecchi, L., Malaspina, T. T., Albertini, R., Zanca, M., Ridolo, E., Usberti, I., et al. (2007). The contribution of long-distance transport to the presence of Ambrosia pollen in central northern Italy. Aerobiologia, 23(2), 145–151. doi: 10.1007/s10453-007-9060-4.CrossRefGoogle Scholar
  3. Chamecki, M., Meneveau, C., & Parlange, M. B. (2009). Large eddy simulation of pollen transport in the atmospheric boundary layer. Journal of Aerosol Science, 40(3), 241–255. doi: 10.1016/j.jaerosci.2008.11.004.CrossRefGoogle Scholar
  4. Craine, J. M., Towne, E. G., Joern, A., & Hamilton, R. G. (2009). Consequences of climate variability for the performance of bison in tallgrass prairie. Global Change Biology, 15(3), 772–779. doi: 10.1111/j.1365-2486.2008.01769.x.CrossRefGoogle Scholar
  5. Edmonds, R. L. (1979). Aerobiology: The ecological systems approach. Stroundsburg, Pennsylvania: Academic Press.Google Scholar
  6. Garcia-Mozo, H., Perez-Badia, R., Fernandez-Gonzalez, F., & Galan, C. (2006). Airborne pollen sampling in Toledo, central Spain. Aerobiologia, 22(1), 55–66. doi: 10.1007/s10453-005-9015-6.CrossRefGoogle Scholar
  7. Kinney, P. L. (2008). Climate change, air quality, and human health. American Journal of Preventive Medicine, 35(5), 459–467. doi: 10.1016/j.amepre.2008.08.025.CrossRefGoogle Scholar
  8. Knapp, A. K., Briggs, J. M., & Koelliker, J. K. (2001). Frequency and extent of water limitation to primary production in a mesic temperate grassland. Ecosystems, 4(1), 19–28.CrossRefGoogle Scholar
  9. Mahura, A. G., Korsholm, U. S., Baklanov, A. A., & Rasmussen, A. (2007). Elevated birch pollen episodes in Denmark: Contributions from remote sources. Aerobiologia, 23(3), 171–179. doi: 10.1007/s10453-007-9061-3.CrossRefGoogle Scholar
  10. Mao, Y. Y., & Huang, S. Q. (2009). Pollen resistance to water in 80 angiosperm species: Flower structures protect rain-susceptible pollen. New Phytologist, 183(3), 892–899. doi: 10.1111/j.1469-8137.2009.02925.x.CrossRefGoogle Scholar
  11. Martin, M. D., Chamecki, M., Brush, G. S., Meneveau, C., & Parlange, M. B. (2009). Pollen clumping and wind dispersal in an invasive angiosperm. American Journal of Botany, 96(9), 1703–1711. doi: 10.3732/ajb.0800407.CrossRefGoogle Scholar
  12. Pashley, C. H., Fairs, A., Edwards, R. E., Bailey, J. P., Corden, J. M., & Wardlaw, A. J. (2009). Reproducibility between counts of airborne allergenic pollen from two cities in the East Midlands, UK. Aerobiologia, 25(4), 249–263. doi: 10.1007/s10453-009-9130-x.CrossRefGoogle Scholar
  13. Pendell, G. G., Hu, F., Portnoy, J., & Barnes, C. (2007). Global climatic change and its impact on oak pollen season in the Midwestern US. Annals of Allergy, Asthma & Immunology, 98(1), A107–A107.Google Scholar
  14. Pendell, G. G., Hu, F., Pacheco, F., Portnoy, J., & Barnes, C. (2008). Seasonal and daily patterns of Cupressaceae pollen in Kansas City. Journal of Allergy and Clinical Immunology, 121(2), 81.CrossRefGoogle Scholar
  15. Perez, C. F., Gassmann, M. I., & Covi, M. (2009). An evaluation of the airborne pollen-precipitation relationship with the superposed epoch method. Aerobiologia, 25(4), 313–320. doi: 10.1007/s10453-009-9135-5.CrossRefGoogle Scholar
  16. Peternel, R., Culig, J., Hrga, I., & Hercog, P. (2006). Airborne ragweed (Ambrosia artemisiifolia L.) pollen concentrations in Croatia, 2002–2004. Aerobiologia, 22(3), 161–168. doi: 10.1007/s10453-006-9028-9.CrossRefGoogle Scholar
  17. Portnoy, J., & Barnes, C. (2003). Clinical relevance of spore and pollen counts. Immunology and Allergy Clinics of North America, 23(3), 389–410. doi: 10.1016/s0889-8561(03)00028-6.CrossRefGoogle Scholar
  18. Reese, C. A., & Liu, K. B. (2005). Interannual variability in pollen dispersal and deposition on the tropical Quelccaya Ice Cap. Professional Geographer, 57(2), 185–197.CrossRefGoogle Scholar
  19. Sikoparija, B., Radisic, P., Pejak, T., & Simic, S. (2006). Airborne grass and ragweed pollen in the southern Panonnian Valley—consideration of rural and urban environment. Annals of Agricultural and Environmental Medicine, 13(2), 263–266.Google Scholar
  20. Smith, M., Skjoth, C. A., Myszkowska, D., Uruska, A., Puc, M., Stach, A., et al. (2008). Long-range transport of Ambrosia pollen to Poland. Agricultural and Forest Meteorology, 148(10), 1402–1411. doi: 10.1016/j.agrformet.2008.04.005.CrossRefGoogle Scholar
  21. Smith, M., Emberlin, J., Stach, A., Rantio-Lehtimaki, A., Caulton, E., Thibaudon, M., et al. (2009). Influence of the North Atlantic oscillation on grass pollen counts in Europe. Aerobiologia, 25(4), 321–332. doi: 10.1007/s10453-009-9136-4.CrossRefGoogle Scholar
  22. Stepalska, D., Szczepanek, K., & Myszkowska, D. (2002). Variation in Ambrosia pollen concentration in southern and central Poland in 1982–1999. Aerobiologia, 18(1), 13–22.CrossRefGoogle Scholar
  23. Stepalska, D., Myszkowska, D., Wolek, J., Piotrowicz, K., & Obtulowicz, K. (2008). The influence of meteorological factors on Ambrosia pollen loads in Cracow, Poland, 1995–2006. Grana, 47(4), 297–304. doi: 10.1080/00173130802492849.CrossRefGoogle Scholar
  24. Sugita, S. (1994). Pollen representation of vegetation in quaternary sediments: Theory and method in patchy vegetation. Journal of Ecology, 82, 881–897.CrossRefGoogle Scholar
  25. Sugita, S. (2007). Theory of quantitative reconstruction of vegetation II: All you need is love. Holocene, 17(2), 243–257.CrossRefGoogle Scholar
  26. Towne, E. G. (2002). Vascular plants of Konza prairie biological station: An annotated checklist of species in a Kansas tallgrass prairie. Sida, 20, 269–294.Google Scholar
  27. Weaver, J. E. (1968). Prairie plants and their environment: A 50 year study in the Midwest. Lincoln, Nebraska, USA: University of Nebraska Press.Google Scholar
  28. Ziska, L. H., Epstein, P. R., & Schlesinger, W. H. (2009). Rising CO2, climate change, and public health: Exploring the links to plant biology. Environmental Health Perspectives, 117(2), 155–158. doi: 10.1289/ehp.11501.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Kendra K. McLauchlan
    • 1
    Email author
  • Charles S. Barnes
    • 2
  • Joseph M. Craine
    • 3
  1. 1.Department of GeographyKansas State UniversityManhattanUSA
  2. 2.Children’s Mercy Hospital, Section of Allergy and ImmunologyKansas CityUSA
  3. 3.Division of BiologyKansas State UniversityManhattanUSA

Personalised recommendations