, Volume 27, Issue 2, pp 107–120 | Cite as

Diversity of airborne bacteria in samples collected using different devices for aerosol collection

  • Camilla Fahlgren
  • Gunnar Bratbak
  • Ruth-Anne Sandaa
  • Runar Thyrhaug
  • Ulla Li Zweifel
Original Paper


Bacteria are ubiquitous in the atmosphere, where they form a highly diverse community, albeit low in abundance. Several approaches are available for collecting airborne particles, though few comparative studies have been conducted to date. This study examined how different sampling strategies affect the apparent composition of the airborne community. Three devices were tested: an impactor, a liquid impinger, and a Teflon membrane filter. Comparative studies were conducted at one mountainous location in Norway and one seaside location in Sweden. At both locations, microbial samples were collected in parallel using the sampling devices. DNA extraction, construction of 16S rRNA gene clone libraries, and subsequent sequencing were used to identify the bacteria. The comparison between clone libraries retrieved using the different devices indicated good agreement regarding dominant species, overall diversity, and distribution of species among phylogenetic groups. Among the less common species, there were few shared sequences in different clone libraries, likely due to the high diversity of the assessed samples. Bacteria belonging to the Bacteroidetes and Proteobacteria phyla dominated at both locations, and the most common genera were Sphingomonas sp. and Pantoea sp. Chloroplast-like 16S rRNA gene sequences were detected in all samples.


Airborne bacteria Bacterial diversity Aerosol collection Aerobiology 



Hilde Kristiansen and Sabina Arnautovic are thanked for helping with sample collection. This work was financed by the Swedish Research Council for Environment, Agricultural Science and Spatial Planning (FORMAS), grant no. 214-2008-1113, by EU grant no. SEC6-PR-214400 (AEROBACTICS), and by the Research Council of Norway, grant no. 177802/V40.

Supplementary material

10453_2010_9181_MOESM1_ESM.doc (328 kb)
Supplementary material 1 (DOC 328 kb)


  1. Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215(3), 403–410.Google Scholar
  2. Amato, P., Parazols, M., Sancelme, M., Laj, P., Mailhot, G., & Delort, A. M. (2007). Microorganisms isolated from the water phase of tropospheric clouds at the puy de dome: Major groups and growth abilities at low temperatures. FEMS Microbiology Ecology, 59(2), 242–254. doi: 10.1111/J.1574-6941.2006.00199.X.CrossRefGoogle Scholar
  3. Baron, P. A., & Willeke, K. (2001). Aerosol measurement: Principle, techniques, and applications. New York: Wiley.Google Scholar
  4. Bauer, H., Kasper-Giebl, A., Löflund, M., Giebl, H., Hitzenberger, R., Zibuschka, F., et al. (2002). The contribution of bacteria and fungal spores to the organic carbon content of cloud water, precipitation and aerosols. Atmospheric Research, 64, 109–119.CrossRefGoogle Scholar
  5. Bent, S. J., & Forney, L. J. (2008). The tragedy of the uncommon: Understanding limitations in the analysis of microbial diversity. The ISME Journal, 2, 689–695.CrossRefGoogle Scholar
  6. Bovallius, A., Bucht, B., Roffey, R., & Anäs, P. (1978). Long-range air transmission of bacteria. Applied and Environmental Microbiology, 35, 1231–1232.Google Scholar
  7. Bowers, R. M., Lauber, C. L., Wiedinmyer, C., Hamady, M., Hallar, A. G., Fall, R., et al. (2009). Characterization of airborne microbial communities at a high-elevation site and their potential to act as atmospheric ice nuclei. Applied and Environmental Microbiology, 75(15), 5121–5130. doi: 10.1128/Aem.00447-09.CrossRefGoogle Scholar
  8. Brodie, E. L., DeSantis, T. Z., Parker, J. P. M., Zubietta, I. X., Piceno, Y. M., & Andersen, G. L. (2007). Urban aerosols harbor diverse and dynamic bacterial populations. Proceedings of the National Academy of Sciences, USA, 104(1), 299–304.CrossRefGoogle Scholar
  9. Brown, J. K. M., & Hovmoller, M. S. (2002). Epidemiology—aerial dispersal of pathogens on the global and continental scales and its impact on plant disease. Science, 297(5581), 537–541.CrossRefGoogle Scholar
  10. Burton, N. C., Grinshpun, S. A., & Reponen, T. (2007). Physical collection efficiency of filter materials for bacteria and viruses. The Annals of Occupational Hygiene, 51(2), 143–151. doi: 10.1093/Annhyg/Mel073.Google Scholar
  11. Chao, A., Chazdon, R. L., Colwell, R. K., & Shen, T.-J. (2005). A new statistical approach for assessing similarity of species composition with incidence and abundance data. Ecology Letters, 8, 148–159.CrossRefGoogle Scholar
  12. Colwell, R. K. (2009). Estimates: Statistical estimation of species richness and shared species from samples. Version 8.2. User’s guide and application published at: http://purl.Oclc.Org/estimates.
  13. Despres, V., Nowoisky, J., Klose, M., Conrad, R., Andreae, M. O., & Pöschl, U. (2007). Molecular genetics and diversity of primary biogenic aerosol particles in urban, rural, and high alpine air. Biogeosciences Discussion, 4, 349–384.CrossRefGoogle Scholar
  14. Fahlgren, C., Hagstrom, A., Nilsson, E. D., & Zweifel, U. L. (2010). Annual variation of the diversity, viability, and origin of airborne bacteria. Applied and Environmental Microbiology, 76, 3015–3025.CrossRefGoogle Scholar
  15. Fields, N. D., Oxborrow, G. S., Puleo, J. R., & Herring, C. M. (1974). Evaluation of membrane filter field monitors for microbiologial air sampling. Applied Microbiology, 27, 517–520.Google Scholar
  16. Fierer, N., Liu, Z. Z., Rodriguez-Hernandez, M., Knight, R., Henn, M., & Hernandez, M. T. (2008). Short-term temporal variability in airborne bacterial and fungal populations. Applied and Environmental Microbiology, 74(1), 200–207. doi: 10.1128/Aem.01467-07.CrossRefGoogle Scholar
  17. Frohlich-Nowoisky, J., Pickersgill, D. A., Despres, V. R., & Poschl, U. (2009). High diversity of fungi in air particulate matter. Proceedings of the National Academy of Sciences, USA, 106(31), 12814–12819. doi: 10.1073/Pnas.0811003106.CrossRefGoogle Scholar
  18. Good, I. J. (1953). The population frequencies of species and the estimation of population parameters. Biometrika, 40(3–4), 237–264.Google Scholar
  19. Griffin, D. W., Kellogg, C. A., Garrison, V. H., Lisle, J. T., Borden, T. C., & Shinn, E. A. (2003). Atmospheric microbiology in the Northern Caribbean during African dust events. Aerobiologia, 19, 143–157.CrossRefGoogle Scholar
  20. Hagström, Å., Pinhassi, J., & Zweifel, U. L. (2000). Biogeographical diversity among marine bacterioplankton. Aquatic Microbial Ecology, 21, 231–244.CrossRefGoogle Scholar
  21. Harrison, R. M., Jones, A. M., Biggins, P. D. E., Pomeroy, N., Cox, C. S., Kidd, S. P., et al. (2005). Climate factors influencing bacterial count in background air samples. International Journal of Biometeorology, 49(3), 167–178. doi: 10.1007/S00484-004-0225-3.CrossRefGoogle Scholar
  22. Hervas, A., Camarero, L., Reche, I., & Casamayor, E. O. (2009). Viability and potential for immigration of airborne bacteria from Africa that reach high mountain lakes in Europe. Environmental Microbiology, 11(6), 1612–1623. doi: 10.1111/J.1462-2920.2009.01926.X.CrossRefGoogle Scholar
  23. Jensen, P. A., Todd, W. F., Davis, G. N., & Scarpino, P. V. (1992). Evaluation of eight bioaersol samplers challenged with aerosols of free bacteria. American Industrial Hygiene Association Journal, 53, 660–667.Google Scholar
  24. Kellogg, C. A., & Griffin, D. W. (2006). Aerobiology and the global transport of desert dust. Trends in Ecology & Evolution, 21(11), 638–644. doi: 10.1016/J.Tree.2006.07.004.CrossRefGoogle Scholar
  25. Kesavan, J., Bottiger, J. R., & McFarland, A. R. (2008). Bioaerosol concentrator performance: Comparative tests with viable and with solid and liquid nonviable particle. Journal of Applied Microbiology, 104, 285–295.Google Scholar
  26. Kesavan, J., Schepers, D., & McFarland, A. R. (2010). Sampling and retention efficiencies of batch-type liquid-based bioaerosol samplers. Aerosol Science and Technology, 44, 817–829.CrossRefGoogle Scholar
  27. King, M. D., Thien, B. F., Tiirikainen, S., & McFarland, A. R. (2009). Collection characteristics of a batch-type wetted wall bioaerosol sampling cyclone. Aerobiologia 25, 239–247.Google Scholar
  28. Lighthart, B. (1997). The ecology of bacteria in the alfresco atmosphere. FEMS Microbiology Ecology, 23, 263–274.CrossRefGoogle Scholar
  29. Lundholm, I. M. (1982). Comparison of methods for quantitative-determinations of airborne bacteria and evaluation of total viable counts. Applied and Environmental Microbiology, 44(1), 179–183.Google Scholar
  30. Maron, P. A., Lejon, D. P. H., Carvalho, E., Bizet, K., Lemanceau, P., Ranjard, L., et al. (2005). Assessing genetic structure and diversity of airborne bacterial communities by DNA fingerprinting and 16s rdna clone library. Atmospheric Environment, 39(20), 3687–3695. doi: 10.1016/J.Atosenv.2005.03.002.CrossRefGoogle Scholar
  31. Möhler, O., DeMott, P. J., Vali, G., & Levin, Z. (2007). Microbiology and atmospheric processes: The role of biological particles in cloud physics. Biogeosciences, 4, 1059–1071.CrossRefGoogle Scholar
  32. Pommier, T., Canback, B., Riemann, L., Bostrom, K. H., Simu, K., Lundberg, P., et al. (2007). Global patterns of diversity and community structure in marine bacterioplankton. Molecular Ecology, 16(4), 867–880. doi: 10.1111/J.1365-294x.2006.03189.X.CrossRefGoogle Scholar
  33. Porter, K. G., & Feig, Y. S. (1980). The use of dapi for identifying and counting aquatic microflora. Limnology and Oceanography, 25(5), 943–948.CrossRefGoogle Scholar
  34. Shannon, C. E. (1948). A mathematical theory of communication. Bell System Technical Journal, 27(4), 623–656.Google Scholar
  35. Soltis, P. S., Soltis, D. E., & Doyle, J. J. (1998). Molecular systematics of plants ii: DNA sequencing. Dordrecht: Kluwer Academic Publishers.Google Scholar
  36. Tamura, K., Dudley, J., Nei, M., & Kumar, S. (2007). Molecular evolutionary genetics analysis (mega) software version 4.0. Molecular Biology and Evolution, 24, 1596–1599.CrossRefGoogle Scholar
  37. Tormo, R., Recio, D., Silva, I., & Muñoz, A. F. (2001). A quantitative investigation of airborne algae and liche soredia obtained from pollen traps in South-West Spain. European Journal of Phycology, 36, 385–390.CrossRefGoogle Scholar
  38. Weisburg, W. G., Barns, S. M., Pelletier, D. A., & Lane, D. J. (1991). 16s ribosomal DNA amplification for phylogenetic study. Journal of Bacteriology, 173(2), 697–703.Google Scholar
  39. Whyte, W., Green, G., & Albisu, A. (2007). Collection efficiency and design of microbial air samplers. Journal of Aerosol Science, 38, 101–114.CrossRefGoogle Scholar
  40. Wittmaack, K., Whnes, H., Heinzmann, U., & Agerer, R. (2005). An overview on bioaerosols viewed by scanning electron microscopy. Science of the Total Environment, 346, 244–255.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Camilla Fahlgren
    • 1
  • Gunnar Bratbak
    • 2
  • Ruth-Anne Sandaa
    • 2
  • Runar Thyrhaug
    • 2
  • Ulla Li Zweifel
    • 3
  1. 1.School of Natural SciencesLinnaeus UniversityKalmarSweden
  2. 2.Department of BiologyUniversity of BergenBergenNorway
  3. 3.Department of Cell and Molecular BiologyUniversity of GothenburgGöteborgSweden

Personalised recommendations