Advertisement

Aerobiologia

, Volume 26, Issue 4, pp 289–300 | Cite as

The importance of cultivated land for spreading of allergenic plants in Italy

  • Krunica Hruska
  • Lara Staffolani
Original Paper

Abstract

We studied the ecological characteristics of the plants of Italian cultivated land that cause allergies in sensitized individuals. Differences between the allergenic flora of annual and perennial cultivations were found. Prevalence of annual therophytes was found in seasonal and annual crops subjected to soil tillage and to strong human disturbance. Plants growing in stable, moderately disturbed cultivations (citrus and olive groves, vineyards) were more often perennials. Allergenic species dispersed by wind and those endowed with multiple dispersal strategies (polychory) were well represented in seasonal and annual crops. The moderate height of these cultivations facilitates circulation of air, favouring the diffusion of anemochoric plants, which explains the abundance of the Poaceae and the Asteraceae families. The spreading of some allochthonous invasive allergenic species was ascertained. The entrance of allergenic plants from surrounding natural ecosystems increases the overall allergenicity of Italian cultivations. The results obtained pointed out a strong relationship between allergenic flora, human impact, and the structure of the cultivations. They point out the importance of knowledge about the ecological characteristics of the allergenic flora infesting the cultivations, which enables efficacious control of the diffusion of the most dangerous species.

Keywords

Allergenic plants Ecology Pollen morphology Cultivated land Italy 

References

  1. Allegrezza, M., & Hruska, K. (1992). Studio fitosociologico della vegetazione infestante i campi di Lens culinaris Medicus dei piani carsici di Castelluccio di Norcia (Italia Centrale). Documents Phytosociologiques, 14, 83–89.Google Scholar
  2. Allergome (2009) A Database of Allergenic Molecules. Allergome Institutions for Project, Latina, Italy. http://www.allergome.org.
  3. Baldoni, M. (1995). La vegetazione infestante le colture di segale (Secale cereale L.) nel piano di Santa Scolastica (Appennino umbro-marchigiano). Fitosociologia, 30, 257–261.Google Scholar
  4. Bullock, J. M., Kenward, K. E., & Hails, R. S. (2002). Dispersal ecology. Oxford: Blackwell.Google Scholar
  5. Cecchi, L., Torrigiani Malaspina, T., Albertini, R., Zanca, M., Ridolo, E., Usberti, I., et al. (2007). The contribution of long distance transport to the presence of Ambrosia pollen in central northern Italy. Aerobiologia, 23, 145–151. doi: 10.1007/s10453-007-9060-4.CrossRefGoogle Scholar
  6. Conti, F., Abbate, G., Alessandrini, A., & Blasi, C. (2005). An annotated checklist of the Italian vascular flora. Roma: Palombi.Google Scholar
  7. Covarelli, G. (2002). Evoluzione della flora e della vegetazione infestante le principali colture agrarie in Italia. Fitosociologia, 39(1), 3–13.Google Scholar
  8. D’Amato, G., Cecchi, L., Bovini, S., Nunes, C., Annesi-Maesano, I., Behrendt, H., et al. (2007). Allergenic pollen and pollen allergy in Europe. Allergy, 121(2), 537–538. doi: 10.1111/j.1398-9995.2007.01393.s.Google Scholar
  9. Edmonds, R. L. (1979). Aerobiology. The ecological systems approach. Strandsburg: Dowden, Hutchingson & Ross Inc.Google Scholar
  10. Emberlin, J. (1997). Grass, tree and weed pollens. In A. B. Kay (Ed.), Allergy and allergic diseases (Vol. 2). Oxford: Blackwell Science.Google Scholar
  11. Emberlin, J., Jäger, S., Dominguez-Vilches, E., Galán Soldevilla, C., Hodal, L., Mandrioli, P., et al. (2000). Temporal and geographical variations in grass pollen seasons in areas of western Europe: An analysis of season dates at sites of the European pollen information system. Aerobiologia, 16, 373–379.CrossRefGoogle Scholar
  12. Erdtman, G. (1971). Pollen morphology and plant taxonomy. I Angiosperms. New York: Hafner Publ. Company.Google Scholar
  13. Esch, R. E. (1999). Grass pollen allergens. In R. F. Lockey & S. C. Bukantz (Eds.), Allergens and allergen immunotherapy (pp. 103–120). Marcel Dekker: New York.Google Scholar
  14. Fornaciari, M., Galán, C., Mediavilla, A., Dominguez, E., & Romano, B. (2000). Aeropalynological and phenological study in two different Mediterranean olive areas: Córdoba (Spain) and Perugia (Italy). Plant Biosystems, 134(2), 199–204. doi: 10.1080/11263500012331358474.CrossRefGoogle Scholar
  15. Gabriel, D., Thies, C., & Tscharmtke, T. (2005). Local diversity of arable weeds increases with landscape complexity. Perspectives in Plant Ecology, Evolution and Systematics, 7(2), 85–93. doi: 10.1016/j.ppees.2005.04.001.CrossRefGoogle Scholar
  16. Galán, C., Vasquez, L., Garcia-Mozo, H., & Dominguez, E. (2004). Forecasting olive (Olea europaea L.) crop yield based on pollen emission. Field Crops Research, 86(1), 43–51.CrossRefGoogle Scholar
  17. Grant Smith, E. (1990). Sampling and identifying allergenic pollens and molds. San Antonio, Texas: Blewstone Press.Google Scholar
  18. Grime, J. P. (2001). Plant strategies, Vegetation processes and ecosystem properties. Chichester: Wiley & Sons.Google Scholar
  19. Gross, M. (2002). New natures and old science: hands-on practice and academic research in ecological restoration. Science Studies, 15, 17–35.CrossRefGoogle Scholar
  20. Jongman, R. H. G., Külvik, M., & Kristiansen, I. (2005). European ecological networks and greenways. Landscape and Urban Planning, 68, 305–319. doi: 10.1016S0169-2046(03)00163-4.CrossRefGoogle Scholar
  21. Kowarik, I. (2003). Biologische invasionen: Neophyten und neozonen in mitteleuropa. Ulmer: Stuttgart.Google Scholar
  22. Linskens, H. F., & Cresti, M. (2000). Pollen allergy as an ecological phenomenon: a review. Plant Biosystems, 134(3), 341–352.Google Scholar
  23. Lososová, Z., Chytr’y, M., & Kühn, I. (2008). Plant attributes determining the regional distribution of weeds on central European arable land. Journal of Biogeography, 35, 177–187. doi: 10.1111/j.1365-2007.01778.x.Google Scholar
  24. Norris-Hill, J. (1997). The influence of ambient temperature on the abundance of Poaceae pollen. Aerobiologia, 13(2), 91–97. doi: PHS0393-5965(97)00011-5.CrossRefGoogle Scholar
  25. Ozinga, W. A., Bekker, R. M., Schamineé, J. H. J., & Groenendael, J. M. (2004). Dispersal potential in plant communities depends on environmental conditions. Journal of Ecology, 92, 767–777. doi: 10.1111/j.0022-0477.2004.00916.x.CrossRefGoogle Scholar
  26. Poldini, L., Oriolo, G., & Mazzolini, G. (1998). The segetal vegetation of vineyards and crop fields in Friuli-Venezia Giulia (NE Italy). Studia Geobotanica, 16, 5–32.Google Scholar
  27. Prieto Baena, J. C., Hidalgo, P. J., Dominguez, E., & Galán, C. (2003). Pollen production in the Poaceae family. Grana, 42, 153–160. doi: 10.1080/00173130310011810.CrossRefGoogle Scholar
  28. Puc, M. (2006). Ragweed and mugwort pollen in Szczecin, Poland. Aerobiologia, 22, 67–78. doi: 10.1007/s10453-005-9010-7.CrossRefGoogle Scholar
  29. Rastelli, F., Staffolani, L., & Hruska, K. (2003). Ecological study of the vegetal component in the terrestrial ecotones of central Italy. Journal of Mediterranean Ecology, 4, 39–43.Google Scholar
  30. Raunkiaer, C. (1934). The life forms of the plants and statistical geography. UK, Clarendon Press: Oxford.Google Scholar
  31. Riera, M. D., Cerda, M. T., & Martin, J. (2002). A correlation study between airborne pollen and causes of pollinosis in humans. Aerobiologia, 18, 169–173.CrossRefGoogle Scholar
  32. Ryan, P. D., Harper, D. A. T., & Whalley, J. S. (1994). PALSTAT: User’s manual and case history. Dordrecht: Kluwer.Google Scholar
  33. Sampson, H. A. (2004). Update in food allergy. The Journal of Allergy and Clinical Immunology, 113(5), 805–819. doi: 10.1016/j.jaci.2004.03.014.CrossRefGoogle Scholar
  34. Sanches-Mesa, J. A., Smith, M., Emberlin, J., Allitt, U., Caulton, E., & Galán, C. (2003). Characteristics of grass pollen seasons in areas of southern Spain and the United Kingdom. Aerobiologia, 19, 243–250.CrossRefGoogle Scholar
  35. Sebastia, M. T., & Puig, L. (2008). Complex vegetation responses to soil disturbances in mountain grassland. Plant Ecology, 199(1), 77–88. doi: 10.1007/sl1258-008-94132.Google Scholar
  36. Sokal, R., & Rohlf, F. J. (1995). Biometry. New York: Freeman & Company.Google Scholar
  37. Staffolani, L., & Hruska, K. (2008). Ecologia delle allergofite agrarie in Italia. Archivio Geobotanico, 11(1–2), 59–66.Google Scholar
  38. Stoate, C., Boatman, N. D., Borralho, R. J., Carvalho, C. R., De Snoo, C. R., & Eden, P. (2001). Ecological impacts on arable intensification in Europe. Journal of Environmental Management, 63(4), 337–365. doi: 19.1006/jema.2001.0473.CrossRefGoogle Scholar
  39. Tackenberg, O., Poschlod, P., & Bonn, S. (2003). Assessment of wind dispersal potential in plant species. Ecological Monographs, 73(2), 191–205. doi: 10.1890/0012-9615(2003)073[0191:AOOWDPI]2.0.CO.2.CrossRefGoogle Scholar
  40. Weber, R. W. (2007). Cross-reactivity of pollen allergens: Impact on allergen immunotherapy. Annals of Allergy, Asthma & Immunology, 99(3), 203–212.CrossRefGoogle Scholar
  41. Westhoff, V., & van den Maarel, E. (1978). The Braun-Blanquet approach. In R. H. Whitaker (Ed.), Classification of plant communities (pp. 289–399). Junk: The Hague.Google Scholar
  42. Zauli, D., Tiberio, D., Grassi, A., & Ballardini, G. (2006). Ragweed pollen travels long distance. Annals of Allergy, Asthma & Immunology, 97, 122–123.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Department of Environmental Sciences-Botany and Ecology SectionUniversity of CamerinoCamerinoItaly

Personalised recommendations