, Volume 26, Issue 3, pp 185–194 | Cite as

Airborne bacteria and antibiotic resistance genes in hospital rooms

  • Yan Gilbert
  • Marc Veillette
  • Caroline DuchaineEmail author
Original paper


The microbial biodiversity of bioaerosols in recently occupied hospital rooms was assessed in a pulmonology unit. Environmental samples and isolates were also screened for antibiotics resistance genes. Biofilms from sink drains were also studied to evaluate whether sink drains constitute a potential source of bioaerosols in this environment and a reservoir for opportunistic bacteria and antibiotic resistance genes. Stenotrophomonas maltophilia was by far the most frequently isolated microorganisms from the biofilm, followed by Enterobacter cloacae. Airborne bacterial concentration ranged from 14 to 74 CFU m−3 and fungi ranged from 50 to 600 CFU m−3. Biofilm bacteria were outnumbered in aerosols by microorganisms affiliated with human skin flora. Nonetheless, they were recovered from air samples in low concentrations. Erythromycin resistance genes were detected in all air samples collected from hospital rooms, and tetracycline resistance genes were detected sporadically. Antibiotic resistance genes were found in a single drain suggesting that genes present in DNA extracts from air samples were not aerosolized from sink drains, but rather from an unknown source. Results obtained in this study suggest that bacteria from sink drains were not aerosolized in significant concentration. They still remain a concern because of the risk of aerial transmission associated with their presence.


Biofilm Bioaerosols Antibiotic resistance Biodiversity Hospital Stenotrophomonas maltophilia 



Gilbert Y. was a Quebec Respiratory Health training fellow, sponsored by the Institute of Circulatory and Respiratory Health of Canadian Institutes of Health Research (CIHR) and the Health Respiratory Network of the Fonds de la Recherche en Santé du Québec (FRSQ). Duchaine C. acknowledges FRSQ Junior 2 Scholarship and is a member of the FRSQ Respiratory Health Network.


  1. Adams, W. E., Habib, M., Berrington, A., Koerner, R., & Steel, D. H. (2006). Postoperative endophthalmitis caused by Sphingomonas paucimobilis. Journal of Cataract & Refractory Surgery, 32(7), 1238–1240.CrossRefGoogle Scholar
  2. Ager, B. P., & Tickner, J. A. (1983). The control of microbiological hazards associated with air-conditioning and ventilation systems. Annals of Occupational Hygiene, 27(4), 341–358.CrossRefGoogle Scholar
  3. Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215(3), 403–410.Google Scholar
  4. Anaissie, E. J., Kuchar, R. T., Rex, J. H., Francesconi, A., Kasai, M., Muller, F. M., et al. (2001). Fusariosis associated with pathogenic fusarium species colonization of a hospital water system: A new paradigm for the epidemiology of opportunistic mold infections. Clinical Infectious Diseases, 33(11), 1871–1878.CrossRefGoogle Scholar
  5. Andersen, A. A. (1958). New sampler for the collection, sizing, and enumeration of viable airborne particles. Journal of Bacteriology, 76(5), 471–484.Google Scholar
  6. Appelbaum, P. C. (2006). MRSA—The tip of the iceberg. Clinical Microbiology & Infection, 12(Suppl 2), 3–10.Google Scholar
  7. Augustowska, M., & Dutkiewicz, J. (2006). Variability of airborne microflora in a hospital ward within a period of one year. Annals Of Agricultural And Environmental Medicine, 13(1), 99–106.Google Scholar
  8. Ayliffe, G. A., Babb, J. R., Collins, B. J., Lowbury, E. J., & Newsom, S. W. (1974). Pseudomonas aeruginosa in hospital sinks. The Lancet, 2(7880), 578–581.CrossRefGoogle Scholar
  9. Beggs, C. B. (2003). The airborne transmission of infection in hospital buildings: Fact of fiction? Indoor and Built Environment, 12, 9–18.CrossRefGoogle Scholar
  10. Beggs, C. B., Kerr, K. G., Noakes, C. J., Hathway, E. A., & Sleigh, P. A. (2008). The ventilation of multiple-bed hospital wards: Review and analysis. American Journal of Infection Control, 36(4), 250–259.CrossRefGoogle Scholar
  11. Brown, D. G., & Baublis, J. (1977). Reservoirs of Pseudomonas in an intensive care unit for newborn infants: Mechanisms of control. Journal of Pediatrics, 90(3), 453–457.CrossRefGoogle Scholar
  12. Chen, J., Yu, Z., Michel, F. C., Jr., Wittum, T., & Morrison, M. (2007). Development and application of real-time PCR assays for quantification of erm genes conferring resistance to macrolides-lincosamides-streptogramin B in livestock manure and manure management systems. Applied and Environmental Microbiology, 73(14), 4407–4416.CrossRefGoogle Scholar
  13. Curtis, L., Cali, S., Conroy, L., Baker, K., Ou, C. H., Hershow, R., et al. (2005). Aspergillus surveillance project at a large tertiary-care hospital. Journal of Hospital Infection, 59(3), 188–196.CrossRefGoogle Scholar
  14. Dalben, M., Varkulja, G., Basso, M., Krebs, V. L., Gibelli, M. A., Van Der Heijden, I., et al. (2008). Investigation of an outbreak of Enterobacter cloacae in a neonatal unit and review of the literature. Journal of Hospital Infection, 70(1), 7–14.CrossRefGoogle Scholar
  15. Doring, G., Ulrich, M., Muller, W., Bitzer, J., Schmidt-Koenig, L., Munst, L., et al. (1991). Generation of Pseudomonas aeruginosa aerosols during handwashing from contaminated sink drains, transmission to hands of hospital personnel, and its prevention by use of a new heating device. Zentralblatt fur Hygiene und Umweltmedizin, 191(5–6), 494–505.Google Scholar
  16. Driscoll, J. A., Brody, S. L., & Kollef, M. H. (2007). The epidemiology, pathogenesis and treatment of Pseudomonas aeruginosa infections. Drugs, 67(3), 351–368.CrossRefGoogle Scholar
  17. Dutka-Malen, S., Evers, S., & Courvalin, P. (1995). Detection of glycopeptide resistance genotypes and identification to the species level of clinically relevant enterococci by PCR. Journal of Clinical Microbiology, 33(5), 1434.Google Scholar
  18. Edmond, M. B., Wallace, S. E., Mcclish, D. K., Pfaller, M. A., Jones, R. N., & Wenzel, R. P. (1999). Nosocomial bloodstream infections in United States hospitals: A three-year analysis. Clinical Infectious Diseases, 29(2), 239–244.CrossRefGoogle Scholar
  19. Eggleston, P. (2003). Environmental control for fungal allergen exposure. Current Allergy and Asthma Reports, 3(5), 424–429.CrossRefGoogle Scholar
  20. Elliott, B., Chang, B. J., Golledge, C. L., & Riley, T. V. (2007). Clostridium difficile-associated diarrhoea. International Medicine Journal, 37(8), 561–568.Google Scholar
  21. Fridkin, S., & Jarvis, W. (1996). Epidemiology of nosocomial fungal infections. Clinical Microbiology Reviews, 9(4), 499–511.Google Scholar
  22. Friedman, N. D., Korman, T. M., Fairley, C. K., Franklin, J. C., & Spelman, D. W. (2002). Bacteraemia due to Stenotrophomonas maltophilia: An analysis of 45 episodes. Journal of Infections, 45(1), 47–53.CrossRefGoogle Scholar
  23. Groll, A. H., & Walsh, T. J. (2001). Uncommon opportunistic fungi: New nosocomial threats. Clinical Microbiology & Infection, 7(Suppl 2), 8–24.Google Scholar
  24. Hall, R. A., & Papierok, B. (1982). Fungi as biological control agents of arthropods of agricultural and medical importance. Parasitology, 84(04), 205–240.CrossRefGoogle Scholar
  25. Hota, B. (2004). Contamination, disinfection, and cross-colonization: Are hospital surfaces reservoirs for nosocomial infection? Clinical Infectious Diseases, 39(8), 1182–1189.CrossRefGoogle Scholar
  26. Hota, S., Hirji, Z., Stockton, K., Lemieux, C., Dedier, H., Wolfaardt, G., et al. (2009). Outbreak of multidrug-resistant Pseudomonas aeruginosa colonization and infection secondary to imperfect intensive care unit room design. Infection Control and Hospital Epidemiology, 30(1), 25–33.CrossRefGoogle Scholar
  27. Hsueh, P. R., Teng, L. J., Yang, P. C., Chen, Y. C., Pan, H. J., Ho, S. W., et al. (1998). Nosocomial infections caused by Sphingomonas paucimobilis: Clinical features and microbiological characteristics. Clinical Infectious Diseases, 26(3), 676–681.CrossRefGoogle Scholar
  28. Jong, S.-C., Donovick, R., & Saul, L. N. (1989). Antitumor and antiviral substances from fungi, advances in applied microbiology (pp. 183–262). Oxford: Academic Press.Google Scholar
  29. Kilic, A., Senses, Z., Kurekci, A. E., Aydogan, H., Sener, K., Kismet, E., et al. (2007). Nosocomial outbreak of Sphingomonas paucimobilis bacteremia in a hemato/oncology unit. Japanese Journal of Infectious Diseases, 60(6), 394–396.Google Scholar
  30. Labriola, L., Ercam, V. B., Swinne, D., & Jadoul, M. (2009). Successful treatment with voriconazole of prolonged Paecilomyces lilacinus fungemia in a chronic hemodialyzed patient. Clinical Nephrology, 71(3), 355–358.Google Scholar
  31. Levin, M. H., Olson, B., Nathan, C., Kabins, S. A., & Weinstein, R. A. (1984). Pseudomonas in the sinks in an intensive care unit: Relation to patients. Journal of Clinical Pathology, 37(4), 424–427.CrossRefGoogle Scholar
  32. Li, C. S., & Hou, P. A. (2003). Bioaerosol characteristics in hospital clean rooms. The Science of The Total Environment, 305(1–3), 169–176.CrossRefGoogle Scholar
  33. Marchesi, J. R., Sato, T., Weightman, A. J., Martin, T. A., Fry, J. C., Hiom, S. J., et al. (1998). Design and evaluation of useful bacterium-specific PCR primers that amplify genes coding for bacterial 16S rRNA. Applied and Environmental Microbiology, 64(2), 795–799.Google Scholar
  34. McBain, A. J., Bartolo, R. G., Catrenich, C. E., Charbonneau, D., Ledder, R. G., Rickard, A. H., et al. (2003). Microbial characterization of biofilms in domestic drains and the establishment of stable biofilm microcosms. Applied and Environmental Microbiology, 69(1), 177–185.CrossRefGoogle Scholar
  35. McDonald, L. C., Walker, M., Carson, L., Arduino, M., Aguero, S. M., Gomez, P., et al. (1998). Outbreak of Acinetobacter spp. bloodstream infections in a nursery associated with contaminated aerosols and air conditioners. The Pediatric Infectious Disease Journal, 17(8), 716–722.CrossRefGoogle Scholar
  36. McGeer, A., Low, D. E., Penner, J., Ng, J., Goldman, C., & Simor, A. E. (1990). Use of molecular typing to study the epidemiology of Serratia marcescens. Journal of Clinical Microbiology, 28(1), 55–58.Google Scholar
  37. Moore, J. E., Thompson, I., Crowe, M., Xu, J., Shaw, A., Millar, B. C., et al. (2002). Burkholderia cepacia from a sink drain. Journal of Hospital Infection, 50(3), 235–237.CrossRefGoogle Scholar
  38. Muder, R. R., Harris, A. P., Muller, S., Edmond, M., Chow, J. W., Papadakis, K., et al. (1996). Bacteremia due to Stenotrophomonas (Xanthomonas) maltophilia: A prospective, multicenter study of 91 episodes. Clinical Infectious Diseases, 22(3), 508–512.Google Scholar
  39. Muyzer, G., De Waal, E. C., & Uitterlinden, A. G. (1993). Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Applied and Environmental Microbiology, 59(3), 695–700.Google Scholar
  40. Perryman, F. A., & Flournoy, D. J. (1980). Prevalence of gentamicin- and amikacin-resistant bacteria in sink drains. Journal of Clinical Microbiology, 12(1), 79–83.Google Scholar
  41. Riser, E., Noone, P., & Thompson, R. E. (1978). The use of a fluorescence typing method in an epidemiological study of Klebsiella infection in a London hospital. The Journal of Hygiene, 80(1), 43–56.CrossRefGoogle Scholar
  42. Roberts, K., Hathway, A., Fletcher, L. A., Beggs, C. B., Elliott, M. W., & Sleigh, P. A. (2006). Bioaerosol production on a respiratory ward. Indoor and Built Environment, 15(1), 35–40.CrossRefGoogle Scholar
  43. Sarica, S., Asan, A., Otkun, M. T., & Ture, M. (2002). Monitoring indoor airborne fungi and bacteria in the different areas of Trakya University Hospital, Edirne, Turkey. Indoor and Built Environment, 11, 285–292.CrossRefGoogle Scholar
  44. Senol, E. (2004). Stenotrophomonas maltophilia: The significance and role as a nosocomial pathogen. Journal of Hospital Infection, 57(1), 1–7.CrossRefGoogle Scholar
  45. Shiomori, T., Miyamoto, H., & Makishima, K. (2001). Significance of airborne transmission of methicillin-resistant Staphylococcus aureus in an otolaryngology-head and neck surgery unit. Archives of Otolaryngology—Head & Neck Surgery, 127(6), 644–648.Google Scholar
  46. Sisti, M., Schiavano, G. F., Salvaggio, L., Albano, A., & Brandi, G. (2000). Evaluation of hospital indoor fungal air pollution. Igiene Moderna, 113(2), 147–160.Google Scholar
  47. Squier, C., Yu, V. L., & Stout, J. E. (2000). Waterborne nosocomial infections. Current Infectious Disease Reports, 2(6), 490–496.CrossRefGoogle Scholar
  48. Streifel, A. J., Stevens, P. P., & Rhame, F. S. (1987). In-hospital source of airborne Penicillium species spores. Journal of Clinical Microbiology, 25(1), 1–4.Google Scholar
  49. Tang, J. W., Li, Y., Eames, I., Chan, P. K., & Ridgway, G. L. (2006). Factors involved in the aerosol transmission of infection and control of ventilation in healthcare premises. Journal of Hospital Infection, 64(2), 100–114.CrossRefGoogle Scholar
  50. Thorne, P. S., & Duchaine, C. (2007). Airborne bacteria and endotoxin. In C. J. Hurst, R. M. Crawford, J. L. Garland, D. A. Lipson, A. L. Mills, & L. D. Stetzenbach (Eds.), Manual of environmental microbiology (pp. 989–1004). Washington, DC: ASM Press.Google Scholar
  51. Trautmann, M., Lepper, P. M., & Haller, M. (2005). Ecology of Pseudomonas aeruginosa in the intensive care unit and the evolving role of water outlets as a reservoir of the organism. American Journal of Infection Control, 33(5 Suppl 1), S41–S49.CrossRefGoogle Scholar
  52. Uduman, S. A., Farrukh, A. S., Nath, K. N. R., Zuhair, M. Y. H., Ifrah, A., Khawla, A. D., et al. (2002). An outbreak of Serratia marcescens infection in a special-care baby unit of a community hospital in United Arab Emirates: The importance of the air conditioner duct as a nosocomial reservoir. Journal of Hospital Infection, 52(3), 175–180.CrossRefGoogle Scholar
  53. Van Saene, H. K., Van Putte, J. C., Van Saene, J. J., Van De Gronde, T. W., & Van Warmerdam, E. G. (1989). Sink flora in a long-stay hospital is determined by the patients’ oral and rectal flora. Epidemiology and Infection, 102(2), 231–238.CrossRefGoogle Scholar
  54. Walsh, T. J., & Groll, A. H. (1999). Emerging fungal pathogens: Evolving challenges to immunocompromised patients for the twenty-first century. Transplant Infectious Disease, 1(4), 247–261.CrossRefGoogle Scholar
  55. Yu, Z., Michel, F. C., Jr., Hansen, G., Wittum, T., & Morrison, M. (2005). Development and application of real-time PCR assays for quantification of genes encoding tetracycline resistance. Applied and Environmental Microbiology, 71(11), 6926–6933.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Yan Gilbert
    • 1
  • Marc Veillette
    • 1
  • Caroline Duchaine
    • 1
    Email author
  1. 1.Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de QuébecQuébecCanada

Personalised recommendations