, Volume 26, Issue 1, pp 35–46 | Cite as

Stratospheric microbiology at 20 km over the Pacific Ocean

  • David J. SmithEmail author
  • Dale W. Griffin
  • Andrew C. Schuerger
Original Paper


An aerobiology sampling flight at 20 km was conducted on 28 April 2008 over the Pacific Ocean (36.5° N, 118–149° W), a period of time that coincided with the movement of Asian dust across the ocean. The aim of this study was to confirm the presence of viable bacteria and fungi within a transoceanic, atmospheric bridge and to improve the resolution of flight hardware processing techniques. Isolates of the microbial strains recovered were analyzed with ribosomal ribonucleic acid (rRNA) sequencing to identify bacterial species Bacillus sp., Bacillus subtilis, Bacillus endophyticus, and the fungal genus Penicillium. Satellite imagery and ground-based radiosonde observations were used to measure dust movement and characterize the high-altitude environment at the time of collection. Considering the atmospheric residency time (7–10 days), the extreme temperature regime of the environment (−75°C), and the absence of a mechanism that could sustain particulates at high altitude, it is unlikely that our samples indicate a permanent, stratospheric ecosystem. However, the presence of viable fungi and bacteria in transoceanic stratosphere remains relevant to understanding the distribution and extent of microbial life on Earth.


Upper atmosphere Stratosphere Microbiology Pacific Ocean 



This work was supported by the National Science Foundation Integrative Graduate Education and Research Traineeship (IGERT) program at the University of Washington Graduate Program in Astrobiology, and the NASA Academy at Ames Research Center. Critical resources came from NASA Johnson Space Center, NASA Kennedy Space Center, NASA Dryden Flight Research Center, United States Geological Survey (USGS), Lockheed Martin Corporation and the University of Florida. The authors are grateful to Jack Warren, Ron Bastien, and Mike Zolensky of the NASA Cosmic Dust Program for providing the flight hardware and Dennis Gearhart and Mike Kapitzke for coordinating the flight operations at Dryden. Special thanks is owed to the NASA Academy Staff (Doug O’Handley, Kathleen Hinds, Steve Mitchell, and Yvonne Torres) and 2007 Research Associates (Brandon Suarez, Erin Mulholland, Graham Lau, Jennifer Kissinger, Robert Haynes, Julia Ling, Jason Carroll, Jon Mihaly, Cameron Haag, Rick Conrey, Michael Kru, and Marc Silicani) who played a crucial role in coordinating this study. Atmospheric weather models were generated with the help of Doug Westphal (Naval Research Laboratory), Dave Dempsey (San Francisco State University), and Marion Legg (NASA Ames).


  1. Bauer, H., Kasper-Giebl, A., Löflund, M., Giebl, H., Hitzenberger, R., Zibuschka, F., et al. (2002). The contribution of bacteria and fungal spores to the organic carbon content of cloud water, precipitation, and aerosols. Atmospheric Research, 64, 109–119.CrossRefGoogle Scholar
  2. Bauman, J. J., Russell, P. B., Geller, M. A., & Hamill, P. (2003). A stratospheric aerosol climatology from SAGE II and CLAES measurements: 2. Results and comparisons, 1984–1999. Journal of Geophysical Research, 108(D 13), 1–30.Google Scholar
  3. Brasseur, G., & Solomon, S. (1986). Aeronomy of the middle atmosphere (2nd ed.). Dordrecht: D. Reidel Publishing Company.Google Scholar
  4. Brown, J. K. M., & Hovmøller, M. S. (2002). Aerial dispersal of pathogens on the global continental scales and its impact on plant disease. Science, 297, 537–541.CrossRefGoogle Scholar
  5. Deshler, T., Johnson, B. J., & Rozier, W. R. (1993). Balloonborne measurements of Pinatubo aerosol during 1991 and 1992 at 41°N: Vertical profiles, size distribution, and volatility. Geophysical Research Letters, 20(14), 1435–1438.CrossRefGoogle Scholar
  6. Duce, R. A., Unni, C. K., Ray, B. J., Prospero, J. M., & Merrill, J. T. (1980). Long-range atmospheric transport of soil dust from Asia to the Tropical North Pacific: Temporal variability. Science, 209(4464), 1522–1524.CrossRefGoogle Scholar
  7. Grasby, S. E., Allen, C. C., Longazo, T. G., Lisle, J. T., Griffin, D. W., & Beauchamp, B. (2003). Supraglacial sulfur springs and associated biological activity in the Canadian High Arctic—Signs of life beneath the ice. Astrobiology, 3(3), 583–596.CrossRefGoogle Scholar
  8. Gregory, D. D., & Stepp, W. W. (2004). NASA’s long duration balloon program: The last ten years and the next ten years. Advances in Space Research, 33, 1608–1612.CrossRefGoogle Scholar
  9. Griffin, D. W. (2004). Terrestrial microorganisms at an altitude of 20,000 m in Earth’s atmosphere. Aerobiologia, 20, 135–140.CrossRefGoogle Scholar
  10. Griffin, D. W. (2007). Atmospheric movement of microorganisms in clouds of desert dust and implications for human health. Clinical Microbiology Reviews, 20(3), 459–477.CrossRefGoogle Scholar
  11. Griffin, D. W. (2008). Non-spore forming eubacteria isolated at an altitude of 20,000 m in Earth’s atmosphere: Extended incubation periods needed for culture-based assays. Aerobiologia, 24, 19–25.CrossRefGoogle Scholar
  12. Griffin, D. W., Kellogg, C. A., & Shinn, E. A. (2001). Dust in the wind: Long range transport of dust in the atmosphere and its implications for global public and ecosystem health. Global Change & Human Health, 2(1), 20–31.CrossRefGoogle Scholar
  13. Griffin, D. W., Westphal, D. L., & Gray, M. A. (2006). Airborne microorganisms in the African desert dust corridor over the mid-Atlantic ridge, Ocean Drilling Program, Leg 209. Aerobiologia, 22, 211–226.CrossRefGoogle Scholar
  14. Hamilton, W. D., & Lenton, T. M. (1998). Spora and Gaia: How microbes fly with their clouds. Ethology Ecology & Evolution, 10, 1–16.Google Scholar
  15. Harris, M. J., Wickramasinghe, N. C., Lloyd, D., Narlikar, J. V., Rajaratnam, P., Turner, M. P., et al. (2002). The detection of living cells in stratospheric samples. Proceedings of SPIE, 4495, 192–198.CrossRefGoogle Scholar
  16. Imshenetsky, A. A., Lysenko, S. V., & Kazakov, G. A. (1978). Upper boundary of the biosphere. Applied and Environmental Microbiology, 35(1), 1–5.Google Scholar
  17. Jaffe, D., McKendry, I., Anderson, T., & Price, H. (2003). Six ‘new’ episodes of trans-Pacific transport of air pollutants. Atmospheric Environment, 37, 391–404.CrossRefGoogle Scholar
  18. Junge, K., Eicken, H., Swanson, B. D., & Deming, J. W. (2006). Bacterial incorporation of leucine into protein down to −20°C with evidence for potential activity in sub-eutectic saline ice formations. Cryobiology, 52, 417–429.CrossRefGoogle Scholar
  19. Kar, A., & Takeuchi, K. (2004). Yellow dust: An overview of research and felt needs. Journal of Arid Environments, 59, 167–187.CrossRefGoogle Scholar
  20. Kellogg, C. A., & Griffin, D. W. (2006). Aerobiology and the global transport of desert dust. Trends in Ecology and Evolution, 21(11), 638–644.CrossRefGoogle Scholar
  21. Lighthart, B. (1997). The ecology of bacteria in the alfresco atmosphere. FEMS Microbiology Ecology, 23(4), 263–274.CrossRefGoogle Scholar
  22. Lysenko, S. V. (1980). Resistance of microorganisms of upper layers of the atmosphere to ultraviolet radiation and a high vacuum. Mikrobiologiia, 49(1), 175–177 (in Russian).Google Scholar
  23. Lysenko, S. V., & Demina, N. S. (1992). Drying as one of the extreme factors for the microflora of the atmosphere. Journal of the British Interplanetary Society, 45, 39.Google Scholar
  24. Maki, L. R., & Willoughby, K. J. (1978). Bacteria as biogenic sources of freezing nuclei. Journal of Applied Meteorology, 78, 1049–1053.CrossRefGoogle Scholar
  25. Nadkarni, M. A., Martin, F. E., Jacques, N. A., & Hunter, N. (2002). Determination of bacterial load by real-time PCR using a broad-range (universal) probe and primers set. Microbiology, 148, 257–266.Google Scholar
  26. Narlikar, J. V., Lloyd, D., Wickramasinghe, N. C., Harris, M. J., Turner, M. P., Al-Mufti, S., et al. (2003). A balloon experiment to detect microorganisms in the outer space. Astrophysics and Space Science, 285(2), 555–562.CrossRefGoogle Scholar
  27. National Science Foundation (NSF), NASA Successfully Flight-Test New Balloon Over Antarctica. 26 January 2008.
  28. Nicholson, W. L. (2002). Roles of Bacillus endospores in the environment. Cellular and Molecular Life Sciences, 59, 410–416.CrossRefGoogle Scholar
  29. Nicholson, W. L., Munakata, N., Horneck, G., Melosh, H. J., & Setlow, P. (2000). Resistance of Bacillus endospores to extreme terrestrial and extraterrestrial environments. Microbiology and Molecular Biology Reviews, 64(3), 548–572.CrossRefGoogle Scholar
  30. Pratt, K. A., DeMott, P. J., French, J. F., Wang, Z., Westphal, D. L., Heymsfield, A. J., et al. (2009). In-situ detection of biological particles in cloud ice-crystals. Nature Geoscience. doi: 10.1038/NGEO521. Published online 17 May 2009.
  31. Prenni, A. J., Petters, M. D., Kreidenweis, S. M., Heald, C. L., Martin, S. T., Artaxo, P., et al. (2009). Relative roles of biogenic emissions and Saharan dust as ice nuclei in the Amazon basin. Nature Geosciences. doi: 10.1038/NGEO517. Published online 3 May 2009.
  32. Price, P. B., & Sowers, T. (2004). Temperature dependence of metabolic rates for microbial growth, maintenance, and survival. Proceedings of the National Academy of Sciences of the United States of America, 101(13), 4631–4636.CrossRefGoogle Scholar
  33. Ramaswamy, V., Chanin, M.-L., Angell, J., Barnett, J., Gaffen, D., Gelman, M., et al. (2001). Stratospheric temperature trends: Observations and model simulations. Reviews of Geophysics, 39(1), 71–122.CrossRefGoogle Scholar
  34. Riesenman, P. J., & Nicholson, W. L. (2000). Role of the spore coat layers in Bacillus subtilis spore resistance to hydrogen peroxide, artificial UV-C, UV-B, and solar UV radiation. Applied and Environmental Microbiology, 66(2), 620–626.CrossRefGoogle Scholar
  35. Sattler, B., Puxbaum, H., & Psenner, R. (2001). Bacterial growth in supercooled cloud droplets. Geophysical Research Letters, 28(2), 239–242.CrossRefGoogle Scholar
  36. Schnell, R. C., & Vali, G. (1976). Biogenic ice nuclei: Part I. Terrestrial and marine sources. Journal of the Atmospheric Sciences, 33, 1554–1564.CrossRefGoogle Scholar
  37. Shivaji, S., Chaturvedi, P., Suresh, K., Reddy, G. S. N., Dutt, C. B. S., Wainwright, M., et al. (2006). Bacillus aerius sp. nov., Bacillus aerophilus sp. nov., Bacillus stratosphericus sp. nov. and Bacillus altitudinis sp. nov., isolated from cryogenic tubes used for collecting air samples from high altitudes. International Journal of Systematic and Evolutionary Microbiology, 56, 1465–1473.CrossRefGoogle Scholar
  38. Smith, I. S., Jr. (2004). The NASA Balloon Program: Looking to the future. Advances in Space Research, 33, 1588–1593.CrossRefGoogle Scholar
  39. Sun, J., & Ariya, P. A. (2006). Atmospheric organic and bio-aerosols as cloud condensation nuclei (CCN): A review. Atmospheric Environment, 40, 795–820.CrossRefGoogle Scholar
  40. Szyrmer, W., & Zawadzki, I. (1997). Biogenic and anthropogenic sources of ice-forming nuclei: A review. Bulletin of the American Meteorological Society, 78(2), 209–228.CrossRefGoogle Scholar
  41. Wainwright, M., Alharbi, S., & Wickramasinghe, N. C. (2006). How do microorganisms reach the stratosphere? International Journal of Astrobiology, 5(1), 13–15.CrossRefGoogle Scholar
  42. Wainwright, M., Wickramasinghe, N. C., Narlikar, J. V., & Rajaratnam, P. (2002). Microorganisms culture from stratospheric air samples obtained at 41 km. FEMS Microbiology Letters, 10778, 1–5.Google Scholar
  43. White, T. J., Bruns, T. D., Lee, S. B., & Taylor, J. W. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In M. A. Innis, D. H. Gelfand, J. J. Sninsky, & T. J. White (Eds.), PCR protocols: A guide to methods and applications (pp. 315–322). London: Academic Press.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • David J. Smith
    • 1
    Email author
  • Dale W. Griffin
    • 2
  • Andrew C. Schuerger
    • 3
  1. 1.Department of BiologyUniversity of WashingtonSeattleUSA
  2. 2.United States Geological Survey, Florida Integrated Science CenterTallahasseeUSA
  3. 3.Department of Plant Pathology, Space Life Sciences LaboratoryUniversity of FloridaKennedy Space CenterUSA

Personalised recommendations