Aerobiologia

, 25:275 | Cite as

Benford’s law applied to aerobiological data and its potential as a quality control tool

  • Silvia Docampo
  • María del Mar Trigo
  • María Jesús Aira
  • Baltasar Cabezudo
  • Antonio Flores-Moya
Original Paper

Abstract

Benford’s phenomenological law gives the expected frequencies of the first significant digits of any given series of numbers. According to this law, the frequency of 1 is higher than that of 2; this in turn appears more often 3, and so on. Similarly, Benford’s law can also be applied to the first two significant digits (i.e., from 10 to 99), and so on. Here, we show that gross data sets of daily pollen counts from three aerobiological stations (located in European cities with different features regarding vegetation and climatology) fit Benford’s law for the first significant digits, but this is not always true for the data transformed by a correction factor used in aerobiological studies. That is to say, the biases introduced by rounding and lower and upper built-in limits in pollen counts are detected by Benford’s law analysis. The analysis of the first two significant digits from transformed data is better explained by a Power law than Benford’s law. We propose that Benford’s law could be used as a quality control tool for numerical aerobiological data sets.

Keywords

Aerobiology Benford’s law Leading digit phenomenon Power law Quality control 

References

  1. Aira, M. J., Jato, V., Iglesias, I., & Rodríguez-Rajo, F. J. (2005). Calidad del aire. Polen y esporas en la comunidad gallega (p. 237). Santiago de Compostela: Xunta de Galicia.Google Scholar
  2. Alcázar, P., & Comtois, P. (1999). A new adhesive for airborne pollen sampling. Aerobiologia, 15, 105–108.CrossRefGoogle Scholar
  3. Alcázar, P., Galán, C., Cariñanos, P., & Domínguez-Vilches, E. (2003). A new adhesive for airborne pollen sampling in Spain. Aerobiologia, 19, 57–61.CrossRefGoogle Scholar
  4. Benford, F. (1938). The law of anomalous numbers. Proceedings of the American Philosophical Society, 78, 551–572.Google Scholar
  5. Brown, R. J. C. (2005). Benford’s law and the screening of analytical data: The case of pollutant concentrations in ambient air. The Analyst, 130, 1280–1285.CrossRefGoogle Scholar
  6. Brown, R. J. C. (2007). The use of Zipf’s law in the screening of analytical data: A step beyond Benford. The Analyst, 132, 344–349.CrossRefGoogle Scholar
  7. Cariñanos, P., Emberlin, J., Galán, C., & Domínguez-Vilches, E. (2000). Comparison of two pollen counting methods of slides from Hirst type volumetric trap. Aerobiologia, 16, 339–346.CrossRefGoogle Scholar
  8. Clauset, A., Shalizi, C. R., & Newman, M. E. J. (2007). Power-law distributions in empirical data. arXiv:0706.1062v1. [physics.data-an]: Physics. Data-analysis, statistics and probability. http://arxiv.org/abs/0706.1062v1. Accessed 1 June 2009.
  9. Comtois, P., Alcázar, P., & Nerón, D. (1999). Pollen counts statistics and its relevance to precision. Aerobiologia, 15, 19–28.CrossRefGoogle Scholar
  10. Costas, E., López-Rodas, V., Toro, F. J., & Flores-Moya, A. (2008). The number of cells in colonies of the cyanobacterium Microcystis aeruginosa satisfies Benford’s law. Aquatic Botany, 89, 341–343.CrossRefGoogle Scholar
  11. Domínguez-Vilches, E., Galán, C., Villamandos, F., & Infante, F. (1991). Manejo y evaluación de los datos obtenidos en los muestreos aerobiológicos. Monografías Rea/EAN, 1, 1–18.Google Scholar
  12. Drake, P. D., & Nigrini, M. J. (2000). Computer assisted analytical procedures using Benford’s Law. Journal of Accounting Education, 18, 127–146.CrossRefGoogle Scholar
  13. Galán, C., Cariñanos, P., Alcázar, P., & Domínguez-Vilches, E. (2007). Manual de calidad y gestión de la Red Española de Aerobiología. Córdoba: Servicio de Publicaciones de la Universidad de Córdoba.Google Scholar
  14. Gent, I. & Walsh, T. (2001). Benford’s law. APES-25-2001. Research Reports of the APES Group. United Kingdom. http://www.dcs.st-and.ac.uk/~apes/apesreports.html. Accessed 1 June 2009.
  15. Hill, T. (1995a). Base-invariance implies Benford’s Law. Proceedings of the American Mathematical Society, 123(3), 887–895.CrossRefGoogle Scholar
  16. Hill, T. (1995b). A statistical derivation of the significant-digit law. Statistical Science, 10(4), 354–363.Google Scholar
  17. Hirst, J. M. (1952). An automatic volumetric spore trap. The Annals of Applied Biology, 39(2), 257–265.CrossRefGoogle Scholar
  18. Irdi, G. A., Jones, J. R., & White, C. M. (2002). Pollen and fungal spore sampling and analysis. Statistical evaluations. Grana, 41, 44–47.CrossRefGoogle Scholar
  19. Ley, E. (1996). On the peculiar distribution of the U.S. stock indices digits. The American Statistician, 50(31), 1–313.Google Scholar
  20. Limpert, E., Burke, J., Galán, C., Trigo, M. M., West, J. S., & Stahel, W. A. (2008). Data, not only in aerobiology: How normal is the normal distribution? Aerobiologia, 24, 121–124.CrossRefGoogle Scholar
  21. Lolbert, T. (2008). On the non-existence of a general Benford’s law. Mathematical Social Sciences, 55, 103–106.CrossRefGoogle Scholar
  22. Mebane, W. (2006). Election forensics: The second-digit Benford’s law test and recent American presidential election, Election Fraud Conference, Salt Lake City, Utah, September 29–30, 2006. http://www-personal.umich.edu/~wmebane/pm06.pdf.
  23. Newcomb, S. (1881). Note on the frecuency of use of the different digits in natural numbers. American Journal of Mathematics, 4, 39–40.CrossRefGoogle Scholar
  24. Newman, M. E. J. (2005). Power laws, Pareto distributions and Zipf’s law. Contemporary Physics, 46, 323–351.CrossRefGoogle Scholar
  25. Nigrini, M. J. (1994). Using digital frequencies to detect fraud. The White Paper, (8), 3–6.Google Scholar
  26. Nigrini, M. J. (1996). Digital Analysis and the Reduction of Auditor Litigation Risk. In M. Ettredge (Ed.), Proceedings of the 1996 Deloitte & Touche/University of Kansas symposium on auditing problems (pp. 69–81). Lawrence, KS: University of Kansas.Google Scholar
  27. Nigrini, M. J. (2005). An assessment of the change in the incidence of earnings management around the Enron-Andersen episode. Review of Accounting and Finance, 4, 92–110.CrossRefGoogle Scholar
  28. Nigrini, M. J., & Miller, S. J. (2007). Benford’s Law applied to hydrology data—Results and relevance to other geophysical data. Mathematical Geology, 39, 469–490.CrossRefGoogle Scholar
  29. Pain, J. C. (2008). Benford’s law and complex atomic spectra. Physical Review E, 77, 012102.CrossRefGoogle Scholar
  30. Pinkham, R. S. (1961). On the distribution of first significant digits. The Annals of Mathematical Statistics, 32, 1223–1230.CrossRefGoogle Scholar
  31. Pyrri, I., & Kapsanaki-Gotsi, E. (2007). A comparative study on the airborne fungi in Athens, Greece, By viable and non-viable sampling methods. Aerobiologia, 23, 3–15.CrossRefGoogle Scholar
  32. Recio, M., Cabezudo, B., Trigo, M. M., & Toro, F. J. (1998). Pollen calendar of Malaga (Southern Spain), 1991–1995. Aerobiologia, 14, 101–107.CrossRefGoogle Scholar
  33. Rodríguez-Rajo, J., Jato, V., Iglesias, I., & Aira, M. J. (2007). Estudio aerobiológico. Galicia 2006 (p. 142). Santiago de Compostela: Xunta de Galicia.Google Scholar
  34. Sterling, M., Rogers, C., & Levetin, E. (1999). An evaluation of two methods used for microscopic analysis of airborne fungal spore concentrations from the Burkard Spore Trap. Aerobiologia, 15, 9–18.CrossRefGoogle Scholar
  35. Trigo, M. M., Melgar, M., Sinclair, N. & Meinardus-Hager, G. (2006). Two years of aerobiological study of the atmosphere of Münster (northwestern Germany). In: Abstracts of the 8th International Congress on Aerobiology (pp. 208). Neuchâtel, Switzerland. Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Silvia Docampo
    • 1
  • María del Mar Trigo
    • 1
  • María Jesús Aira
    • 2
  • Baltasar Cabezudo
    • 1
  • Antonio Flores-Moya
    • 1
  1. 1.Departamento de Biología Vegetal (Botánica), Facultad de CienciasUniversidad de MálagaMálagaSpain
  2. 2.Departamento de Botánica, Facultad de FarmaciaUniversidad de Santiago de CompostelaSantiago de Compostela, A CoruñaSpain

Personalised recommendations