, 25:227

Evidences of olive pollination date variations in relation to spring temperature trends

  • Tommaso Bonofiglio
  • Fabio Orlandi
  • Carlo Sgromo
  • Bruno Romano
  • Marco Fornaciari
Original Paper


Airborne pollen concentration patterns reflect flowering phenology of a given species, and it may be a sensitive regional indicator in climate change studies. This paper presents the relationship between a strategic biological event, such as olive flowering, and the air temperature trend, registered over a large scale (1982–2007) in the Umbria region. The aim of the study was to determine relationships between phenological behaviour (flowering) of olive trees and the air temperature trend (1982–2007) in the Umbria region. The phenological data on flowering phase were registered indirectly through an aerobiological monitoring technique. The obtained results showed a strong relationship between phenology and thermal trend. This characteristic was confirmed from results of correlations between temperature (mean temperature from 1st March) and flowering dates, especially that of full flowering (r = −0.9297). Moreover, the results showed an advance trend of 6, 8 and 10 days, respectively of start, full and end of flowering dates. The advance of the recorded flowering time in this period is to ascribe mainly to the increase of mean temperature and above all to that registered in months of May and June.


Olea europaea Pollen Phenology Climate change Italy 


  1. Ahas, R., & Aasa, A. (2006). The effects of climate change on the phenology of selected Estonian plant, bird and fish populations. International Journal of Biometeorology, 51, 17–26.CrossRefGoogle Scholar
  2. Alcamo J, Moreno JM, Nováky B, Bindi M et al. (2007) Europe. Climate change 2007: impacts, adaptation and vulnerability. contribution of working group II to the fourth assessment report of the intergovernmental panel on climate change, Parry ML, Canziani OF, Palutikof JP, van der Linden PJ and Hanson CE (Eds.), Cambridge University Press, Cambridge, UK, 541–580.Google Scholar
  3. Beaubien, E. G., & Freeland, H. J. (2000). Spring phenology trends in Alberta, Canada: links to ocean temperature. International Journal of Biometeorology, 44, 53–59.CrossRefGoogle Scholar
  4. Bernstein L, Bosch P, Canziani O, Chen Z, Christ R, et al. (2007) Summary for policymakers, climate change 2007: synthesis report. A contribution of working groups I, II, and III to the fourth assessment report of the integovernmental panel on climate change. Accessed 02 September 2008.
  5. Bini, G. (1984). Fioritura e impollinazione nell’olivo; indagini sul periodo d’impollinazione, recettività dello stigma ed evoluzione del gametofito femminile. Rivista Ortoflorofrutticoltura It, 68, 57–69.Google Scholar
  6. Bonofiglio, T., Orlandi, F., Sgromo, C., Romano, B., & Fornaciari, M. (2008). Influence of temperature and rainfall on timing of olive (Olea europaea) flowering in southern Italy. New Zealand journal of crop and horticultural science, 36(1), 59–69.Google Scholar
  7. Chmielewski, F. M., & Rötzer, T. (2002). Annual and spatial variability of the beginning of growing season in Europe in relation to air temperature changes. Climate Research, 19, 257–264.CrossRefGoogle Scholar
  8. Chuine, I., Belmonte, J., & Mignot, A. (2000). A modelling analysis of the genetic variation of phenology between tree populations. Journal of Ecology, 88, 561–570.CrossRefGoogle Scholar
  9. Chuine, I., Cour, P., & Rousseau, D. D. (1998). Fitting models predicting dates of flowering of temperate-zone trees using simulated annealing. Plant, Cell and Environvironment, 21, 455–466.CrossRefGoogle Scholar
  10. D’Amato, G., Cecchi, L., Bovini, S., Nunes, C., Annesi-Maesano, I., Behrendt, H., et al. (2007). Allergenic pollen and allergy in Europe. European Journal of Allergy and Clinical Immunology, 62, 976–990.CrossRefGoogle Scholar
  11. D’Amato, G., & Spieksma, F Th M. (1990). Allergenic pollen in Europa. Grana, 30, 67–70.CrossRefGoogle Scholar
  12. Donnelly A, Salamin N, Jones MB (2006). Changes in tree phenology: an indicator of spring warming in Ireland? Biology and Environment: Procedings of the Royal Irish Accademy 106(1): 49–56.Google Scholar
  13. Emberlin, J., Smith, M., Close, R., & Adams-Groom, B. (2007). Changes in the pollen season of the early flowering trees Alnus spp. and Corylus spp. in Worcester, United Kingdom, 1996–2005. International Journal of Biometeorology, 51(3), 181–191.CrossRefGoogle Scholar
  14. Estrella, N., Menzel, A., Krämer, U., & Behrendt, H. (2006). Integration of flowering dates in phenology and pollen counts in aerobiology: analysis of their spatial and temporal coherence in Germany (1992–1999). International Journal of Biometeorology, 51(1), 49–59.CrossRefGoogle Scholar
  15. Estrella, N., Sparks, T. H., & Menzel, A. (2007). Trends and temperature response in the phenology of crops in Germany. Global Change Biology, 13, 1737–1747.CrossRefGoogle Scholar
  16. Fitter, A. H., & Fitter, R. S. R. (2002). Rapid changes in flowering time in British plants. Science, 296(5573), 1689–1691.CrossRefGoogle Scholar
  17. Fornaciari, M., Galan, C., Dominguez, E., & Romano, B. (2000). Aeropalinological and phenological study in two different Mediterranean olive areas: Cordoba (Spain) and Perugia (Italy). Plant Biosystem, 134(2), 199–204.CrossRefGoogle Scholar
  18. Fornaciari, M., Pieroni, L., Orlandi, F., & Romano, B. (2002). A new approach to consider the pollen variable in forecasting yield models. Economic Botany, 56(1), 66–72.CrossRefGoogle Scholar
  19. Galán, C., Cariňanos, P., García-Mozo, H., Alcazar, P., & Dominguez-Vilches, E. (2001). Model for forecasting Olea europaea L. Airbonne pollen in south-west Andalusia, Spain. International Journal of Biometeorology, 45(2), 59–69.CrossRefGoogle Scholar
  20. Galán, C., García-Mozo, H., Vázquez, L., Ruiz, L., Díaz de la Guardia, C., & Domínguez-Vilches, E. (2008). Modeling olive crop yield in Andalusia, Spain. Agronomy Journal, 100(1), 98–104.CrossRefGoogle Scholar
  21. Galán, C., García-Mozo, H., Vázquez, L., Ruiz, L., Díaz de la Guardia, C., & Trigo, M. M. (2005). Heat requirement for the onset of the Olea europaea L. pollen season in several sites in Andalusia and the effect of the expected future climate change. International Journal of Biometeorology, 49, 184–188.CrossRefGoogle Scholar
  22. Galán, C., Vázquez, L., García-Mozo, H., & Domínguez, E. (2004). Forecasting olive (Olea europaea) crop yield based on pollen emission. Field Crops Research, 86, 46–51.CrossRefGoogle Scholar
  23. García-Mozo, H., Orlandi, F., Galán, C., Fornaciari, M., Romano, B., Ruiz, L., et al. (2009). Olive flowering phenology variation between different cultivars in Spain and Italy: modelling analysis. Theoretical and Applied Climatology, 95, 385–395.CrossRefGoogle Scholar
  24. Hackett, W. P., & Hartmann, H. T. (1964). Inflorescence formation in olive as influences by low temperature, photoperiod, and leaf area. Botanical Gazette, 125, 65–72.CrossRefGoogle Scholar
  25. Higgins, S. I., & Richardson, M. (1999). Predicting plant migration rates in a changing world: the role of long-distance dispersal. American Naturalist, 153, 464–475.CrossRefGoogle Scholar
  26. Hirst, J. M. (1952). An automatic volumetric spore-trap. Annals of Applied Biology, 39, 257–265.CrossRefGoogle Scholar
  27. IPCC (2007) Summary for policymakers. In: Climate change 2007: impacts, adaptation and vulnerability. contribution of working group II to the fourth assessment report of the intergovernmental panel on climate change, Parry ML, Canziani OF, Palutikof JP, van der Linden PJ and Hanson CE (Eds.) Cambridge University Press, Cambridge, UK, 7–22.Google Scholar
  28. Jaagus, J., & Ahas, R. (2000). Space-time variations of climatic seasons and their correlation with the phenological development of nature in Estonia. Climate Research, 15(3), 207–219.CrossRefGoogle Scholar
  29. Jato, M. V., Frenguelli, G., Rodrìguez, F. J., & Aira, M. J. (2000). Temperature requirements of Alnus pollen in Spain and Italy (1994–1998). Grana, 39, 240–245.CrossRefGoogle Scholar
  30. Menzel, A., Estrella, N., & Fabian, P. (2001). Spatial and temporal variability of the phenological seasons in Germany from 1951 to 1996. Global Change Biology, 7, 657–666.CrossRefGoogle Scholar
  31. Neilson, P. R., Pitelka, L. F., Solomon, A. M., Nathan, R., Midgley, G. F., Fragoso, J. M. V., et al. (2005). Forecasting Regional to global plant migration in response to climate change. BioScience, 55(9), 749–759.CrossRefGoogle Scholar
  32. Orlandi, F., Ferranti, F., Romano, B., & Fornaciari, M. (2003). Olive pollination: flowering and pollen of two cultivars of Olea europaea. New Zealand Journal of Crop and Horticultural Science, 31, 159–168.Google Scholar
  33. Orlandi, F., Romano, B., & Fornaciari, M. (2005a). Relationship between flowering and heat units to analyze crop efficiency of olive cultivars located in southern Italy. Hortscience, 40(1), 64–68.Google Scholar
  34. Orlandi, F., Vazquez-Ezquerra, L., Ruga, L., Bonofiglio, T., Fornaciari, M., Garcia-Mozo, H., et al. (2005b). Bioclimatic requirements for olive flowering in two mediterranean regions located at the same latitude (Andalucia, Spain and Sicily, Italy). Annals of Agriculture and Environmental Medicine, 12, 47–52.Google Scholar
  35. Osborne, C. P., Chuine, I., Viner, D., & Woodward, F. I. (2000). Olive phenology as a sensitive indicator of future climatic warming in the Mediterranean. Plant, Cell and Environment, 23, 701–710.CrossRefGoogle Scholar
  36. Pannelli, G., Alfei, B., D’Ambrosio, A., Rosati, S., & Fagiani, F. (2000). Varietà di olivo in Umbria. Perugia (Italy): Editrice Pliniana.Google Scholar
  37. Peñuelas, J., & Filella, I. (2001). Phenology: Response to a warming world. Science, 294, 793–795.CrossRefGoogle Scholar
  38. Peñuelas, J., Filella, I., & Comas, P. (2002). Changed plant and animal life cycles from 1952 to 2000 in the mediterranean region. Global Change Biology, 8, 531–544.CrossRefGoogle Scholar
  39. Ribeiro, H., Cunha, M., & Abreu, I. (2005). Airborne pollen of Olea in five regions of Portugal. Annals of Agriculture and Environmental Medicine, 12, 317–320.Google Scholar
  40. Richardson, E. A., Seeley, S. D., & Walker, D. R. (1974). A model for estimating the completion of rest for “Redhaven” and “Elberta” peach trees. Hort Science, 9, 331–332.Google Scholar
  41. Rodríguez-Rajo, F. J., Dacosta, N., & Jato, V. (2004). Airborne olive pollen in Vigo (Northwest Spain): a survey to forecast the onset and daily concentrations of the pollen season. Grana, 43, 101–110.CrossRefGoogle Scholar
  42. Schwartz, M. D., Ahas, R., & Aasa, A. (2006). Onset of spring starting earlier across the northern Hemisphere. Global Change Biology, 12(2), 343–351.CrossRefGoogle Scholar
  43. Schwartz, M. D., & Chen, X. (2002). Examining the onset of spring in China. Climate Research, 21, 157–164.CrossRefGoogle Scholar
  44. Schwartz, M. D., & Reiter, B. E. (2000). Changes in North American spring. International Journal of Climatology, 20(8), 929–932.CrossRefGoogle Scholar
  45. Sparks, T. H., Jeffre, E. P., & Jeffre, C. E. (2000). An examination of the relationship between flowering times and temperature at the national scale using long-term phenological records from the UK. International Journal of Biometeorology, 44, 82–87.CrossRefGoogle Scholar
  46. Stefanescu, C., Peñuelas, J., & Filella, I. (2003). Effects of climatic change on the phenology of butterflies in the northwest mediterranean basin. Global Change Biology, 9, 1494–1506.CrossRefGoogle Scholar
  47. Teranishi, H., Kenda, Y., Katoh, T., Kasuya, M., Oura, E., & Taira, H. (2000). Possible role of climate change in the pollen scatter of Japanese cedar Cryptomeria japonica in Japan. Climate Research, 14, 65–70.CrossRefGoogle Scholar
  48. Williams, T. A., & Abberton, M. T. (2004). Earlier flowering between 1962 and 2002 in agricultural varieties of white clover. Oecologia, 138(1), 122–126.CrossRefGoogle Scholar
  49. Zhao, T., & Schwartz, M. D. (2003). Examining the onset of spring in Wisconsin. Climate Research, 24, 59–70.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Tommaso Bonofiglio
    • 1
  • Fabio Orlandi
    • 1
  • Carlo Sgromo
    • 1
  • Bruno Romano
    • 1
  • Marco Fornaciari
    • 1
  1. 1.Department of Applied BiologyUniversity of PerugiaPerugiaItaly

Personalised recommendations